
Optimal Power Flow problem: a study on Jabr relaxation
The HEXAGON Workshop on power grids

Ambrogio Maria Bernardelli Stefano Gualandi Gabor Riccardi

19 June 2024

Overview

Problem definition

Trees and cycles

Linearizations

Numerical experiment

Conclusions & future works

2 / 24

Problem definition

The problem

Let us take a network modeled as a graph (B,L), where B represents the set of buses
and L represents the set of lines. For every bus k we have a (possibly empty) set of
generators G(k) located at bus k. The problem consists of meeting the energy demand
at every bus, and doing so with the lowest possible energy generation cost.

More precisely, we have the following variables:
▶ for each bus k we have a complex voltage Vk = |Vk |ejδk ;
▶ for each branch km we have two variables Skm and Smk , the complex power

injected into the branch at k and at m, respectively;
▶ for each generator g there is power generation PG

g + jQG
g .

These variables are subjected to five classes of constraints.

3 / 24

The problem

Let us take a network modeled as a graph (B,L), where B represents the set of buses
and L represents the set of lines. For every bus k we have a (possibly empty) set of
generators G(k) located at bus k. The problem consists of meeting the energy demand
at every bus, and doing so with the lowest possible energy generation cost.

More precisely, we have the following variables:
▶ for each bus k we have a complex voltage Vk = |Vk |ejδk ;
▶ for each branch km we have two variables Skm and Smk , the complex power

injected into the branch at k and at m, respectively;
▶ for each generator g there is power generation PG

g + jQG
g .

These variables are subjected to five classes of constraints.

3 / 24

Polar coordinates formulation

inf
PG

g ,QG
g ,δk ,

|Vk |,Skm

∑
g∈G

Fg (PG
g , QG

g) (1a)

s.t.
AC power flow laws:

Skm = (Gkk − jBkk)|Vk |2 + (Gkm − jBkm)|Vk ||Vm| · (cos(θkm) + j sin(θkm)) ∀km ∈ L, (1b)
Flow balance constraints:∑
km∈L

Skm + PL
k + jQL

k =
∑

g∈G(k)

PG
g + j

∑
g∈G(k)

QG
g ∀k ∈ B, (1c)

Branch limits, generator limits, voltage bounds:

|Skm|2 ≤ Ukm ∀km ∈ L, (1d)

Pmin
g ≤ PG

g ≤ Pmax
g , Qmin

g ≤ QG
g ≤ Qmax

g ∀g ∈ G, (1e)

V min
k ≤ |Vk | ≤ V max

k ∀k ∈ B, (1f)

θmin
km ≤ θkm ≤ θmax

km ∀km ∈ L. (1g)

4 / 24

Variable substitution

One can introduce auxiliary variables to tackle the problem of having sine and cosine
functions:

ckm = |Vk ||Vm| · cos(θkm) ∀km ∈ L,

skm = |Vk ||Vm| · sin(θkm) ∀km ∈ L,

ckk = |Vk |2 ∀k ∈ B.

Substituing such variables in the model without adding their definitions gives us a first
relaxed model.

Note that by doing so we manage to remove sine and cosine functions but we also lose
crucial relations between the new variables.

5 / 24

Variable substitution

One can introduce auxiliary variables to tackle the problem of having sine and cosine
functions:

ckm = |Vk ||Vm| · cos(θkm) ∀km ∈ L,

skm = |Vk ||Vm| · sin(θkm) ∀km ∈ L,

ckk = |Vk |2 ∀k ∈ B.

Substituing such variables in the model without adding their definitions gives us a first
relaxed model.

Note that by doing so we manage to remove sine and cosine functions but we also lose
crucial relations between the new variables.

5 / 24

A first relaxed model

inf
PG

g ,QG
g ,ckm,

skm,Skm,Pkm,Qkm

F (x) :=
∑
g∈G

Fg (PG
g) (2a)

Subject to: Pkm = Gkkckk + Gkmckm + Bkmskm ∀km ∈ L, (2b)
Qkm = −Bkkckk − Bkmckm + Gkmskm ∀km ∈ L, (2c)
Skm = Pkm + jQkm ∀km ∈ L, (2d)∑
km∈L

Skm + PL
k + jQL

k =
∑

g∈G(k)

PG
g + j

∑
g∈G(k)

QG
g ∀k ∈ B, (2e)

P2
km + Q2

km ≤ Ukm ∀km ∈ L, (2f)

V min2
k ≤ ckk ≤ V max2

k ∀k ∈ B, (2g)

Pmin
g ≤ PG

g ≤ Pmax
g , Qmin

g ≤ QG
g ≤ Qmax

g ∀g ∈ G, (2h)
ckk ≥ 0 ∀k ∈ B, (2i)
V max

k V max
m ≥ ckm ≥ 0 ∀km ∈ L, (2j)

− V max
k V max

m ≤ skm ≤ V max
k V max

m ∀km ∈ L, (2k)
ckm = cmk , skm = −smk ∀km ∈ L. (2l)

6 / 24

Jabr (I)

Equality
To link the c and s variables we make use of the following equality:

c2
km + s2

mk = ckkcmm ∀km ∈ L. (3)

We will denote by Jabr equality ACOPF relaxation the model (2) together with
constraints (3).

These nonconvex couplings constraints can be relaxed as follows.

Inequality

c2
km + s2

mk ≤ ckkcmm ∀km ∈ L. (4)

7 / 24

Jabr (I)

Equality
To link the c and s variables we make use of the following equality:

c2
km + s2

mk = ckkcmm ∀km ∈ L. (3)

We will denote by Jabr equality ACOPF relaxation the model (2) together with
constraints (3).

These nonconvex couplings constraints can be relaxed as follows.

Inequality

c2
km + s2

mk ≤ ckkcmm ∀km ∈ L. (4)

7 / 24

Jabr (II)

Note that inequality
c2

km + s2
mk ≤ ckkcmm

can be rewritten as

c2
km + s2

mk +
(cmm − ckk

2

)2
≤

(cmm + ckk
2

)2
,

which represents a rotated SOCP cone in R4. Note also that the cone (4) is the
convex hull of (3).

We will denote by Jabr inequality ACOPF relaxation the model (2) together with
constraints (4).

8 / 24

Jabr (II)

Note that inequality
c2

km + s2
mk ≤ ckkcmm

can be rewritten as

c2
km + s2

mk +
(cmm − ckk

2

)2
≤

(cmm + ckk
2

)2
,

which represents a rotated SOCP cone in R4. Note also that the cone (4) is the
convex hull of (3).

We will denote by Jabr inequality ACOPF relaxation the model (2) together with
constraints (4).

8 / 24

Trees and cycles

Trees

Can we take advantage of the network structure to ensure exactness of a relaxed
model?

More specifically, does a multisource radial network require other constraints other
than the Jabr equality?

Lemma 1.
If (B,L) is a multisource radial network, then the Jabr equality ACOPF relaxation is
exact [Jab06].

Why do we need a tree structure for the exactness of the model?

9 / 24

Trees

Can we take advantage of the network structure to ensure exactness of a relaxed
model?

More specifically, does a multisource radial network require other constraints other
than the Jabr equality?

Lemma 1.
If (B,L) is a multisource radial network, then the Jabr equality ACOPF relaxation is
exact [Jab06].

Why do we need a tree structure for the exactness of the model?

9 / 24

Trees

Can we take advantage of the network structure to ensure exactness of a relaxed
model?

More specifically, does a multisource radial network require other constraints other
than the Jabr equality?

Lemma 1.
If (B,L) is a multisource radial network, then the Jabr equality ACOPF relaxation is
exact [Jab06].

Why do we need a tree structure for the exactness of the model?

9 / 24

Trees

Can we take advantage of the network structure to ensure exactness of a relaxed
model?

More specifically, does a multisource radial network require other constraints other
than the Jabr equality?

Lemma 1.
If (B,L) is a multisource radial network, then the Jabr equality ACOPF relaxation is
exact [Jab06].

Why do we need a tree structure for the exactness of the model?

9 / 24

Loop constraints

Definition 1 (Loop constraint).
Given a cycle C on nodes {k1, . . . , kn}, we define the loop constraint on C as the
following

⌊n/2⌋∑
j=0

∑
A⊂[n]
|A|=2j

(−1)j ∏
h∈A

skhkh+1

∏
l∈Ac

ckl kl+1 =
n∏

i=1
cki ki , (5)

with Ac := [n] \ A.

Lemma 2.
The Jabr equality ACOPF relaxation together with the additional loop constraint (5)
written for every cycle of (B,L) is exact.

10 / 24

Loop constraints

Definition 1 (Loop constraint).
Given a cycle C on nodes {k1, . . . , kn}, we define the loop constraint on C as the
following

⌊n/2⌋∑
j=0

∑
A⊂[n]
|A|=2j

(−1)j ∏
h∈A

skhkh+1

∏
l∈Ac

ckl kl+1 =
n∏

i=1
cki ki , (5)

with Ac := [n] \ A.

Lemma 2.
The Jabr equality ACOPF relaxation together with the additional loop constraint (5)
written for every cycle of (B,L) is exact.

10 / 24

Constraint redundancy

Definition 2 (Cycle space).
The (binary) cycle space of an undirected graph is the set of its even-degree subgraphs.

Definition 3 (Cycle basis).
A cycle basis of an undirected graph is a set of simple cycles that forms a basis of the
cycle space of the graph.

Lemma 3.
It is sufficient to write (5) for every cycle in a cycle basis of (B,L).

11 / 24

Constraint redundancy

Definition 2 (Cycle space).
The (binary) cycle space of an undirected graph is the set of its even-degree subgraphs.

Definition 3 (Cycle basis).
A cycle basis of an undirected graph is a set of simple cycles that forms a basis of the
cycle space of the graph.

Lemma 3.
It is sufficient to write (5) for every cycle in a cycle basis of (B,L).

11 / 24

Linearizations

3-cycles and 4-cycles

We first focus on short cycles, namely, cycles made up of 3 or 4 nodes [KDS16]. Note
that, in this case, the polynomials constituiting the loop constraints are cubic
polynomials and quartic polynomials, respectively.

In this particular case, it is possible to reduce the degree of the polynomials thanks to
the following result.

Lemma 4.
Given a cycle of length 3 or 4, if the Jabr equality is satisifed on all the branches of the
cycle, the loop constraint (5) can be replaced exactly by two bilinear constraints.

What about larger cycles?

12 / 24

3-cycles and 4-cycles

We first focus on short cycles, namely, cycles made up of 3 or 4 nodes [KDS16]. Note
that, in this case, the polynomials constituiting the loop constraints are cubic
polynomials and quartic polynomials, respectively.

In this particular case, it is possible to reduce the degree of the polynomials thanks to
the following result.

Lemma 4.
Given a cycle of length 3 or 4, if the Jabr equality is satisifed on all the branches of the
cycle, the loop constraint (5) can be replaced exactly by two bilinear constraints.

What about larger cycles?

12 / 24

3-cycles and 4-cycles

We first focus on short cycles, namely, cycles made up of 3 or 4 nodes [KDS16]. Note
that, in this case, the polynomials constituiting the loop constraints are cubic
polynomials and quartic polynomials, respectively.

In this particular case, it is possible to reduce the degree of the polynomials thanks to
the following result.

Lemma 4.
Given a cycle of length 3 or 4, if the Jabr equality is satisifed on all the branches of the
cycle, the loop constraint (5) can be replaced exactly by two bilinear constraints.

What about larger cycles?

12 / 24

Larger cycles

The idea
Decomposing bigger cycles into smaller cycles by
creating artificial branches.

Two types of decomposition
Cycles can either be decomposed into 3-cycles by
adding branches (1, i), for i = 3, . . . , n, or into
4-cycles by adding branches (1, 2i), for
i = 2, . . . , (n − 2)/2. Note that if n is odd, one
3-cycle needs to be added by creating the artificial
branch (1, n − 1).

13 / 24

Larger cycles

The idea
Decomposing bigger cycles into smaller cycles by
creating artificial branches.

Two types of decomposition
Cycles can either be decomposed into 3-cycles by
adding branches (1, i), for i = 3, . . . , n, or into
4-cycles by adding branches (1, 2i), for
i = 2, . . . , (n − 2)/2. Note that if n is odd, one
3-cycle needs to be added by creating the artificial
branch (1, n − 1).

13 / 24

Larger cycles

The idea
Decomposing bigger cycles into smaller cycles by
creating artificial branches.

Two types of decomposition
Cycles can either be decomposed into 3-cycles by
adding branches (1, i), for i = 3, . . . , n, or into
4-cycles by adding branches (1, 2i), for
i = 2, . . . , (n − 2)/2. Note that if n is odd, one
3-cycle needs to be added by creating the artificial
branch (1, n − 1).

13 / 24

Larger cycles

The idea
Decomposing bigger cycles into smaller cycles by
creating artificial branches.

Two types of decomposition
Cycles can either be decomposed into 3-cycles by
adding branches (1, i), for i = 3, . . . , n, or into
4-cycles by adding branches (1, 2i), for
i = 2, . . . , (n − 2)/2. Note that if n is odd, one
3-cycle needs to be added by creating the artificial
branch (1, n − 1).

13 / 24

Larger cycles

The idea
Decomposing bigger cycles into smaller cycles by
creating artificial branches.

Two types of decomposition
Cycles can either be decomposed into 3-cycles by
adding branches (1, i), for i = 3, . . . , n, or into
4-cycles by adding branches (1, 2i), for
i = 2, . . . , (n − 2)/2. Note that if n is odd, one
3-cycle needs to be added by creating the artificial
branch (1, n − 1).

13 / 24

Larger cycles

The idea
Decomposing bigger cycles into smaller cycles by
creating artificial branches.

Two types of decomposition
Cycles can either be decomposed into 3-cycles by
adding branches (1, i), for i = 3, . . . , n, or into
4-cycles by adding branches (1, 2i), for
i = 2, . . . , (n − 2)/2. Note that if n is odd, one
3-cycle needs to be added by creating the artificial
branch (1, n − 1).

13 / 24

Larger cycles

The idea
Decomposing bigger cycles into smaller cycles by
creating artificial branches.

Two types of decomposition
Cycles can either be decomposed into 3-cycles by
adding branches (1, i), for i = 3, . . . , n, or into
4-cycles by adding branches (1, 2i), for
i = 2, . . . , (n − 2)/2. Note that if n is odd, one
3-cycle needs to be added by creating the artificial
branch (1, n − 1).

13 / 24

Excursus: multilinear optimization (I)

Multilinear problem

min
∑
I∈I0

c0
I

∏
v∈I

xv (6a)

s.t.
∑
I∈Ij

c j
I

∏
v∈I

xv ≤ bj ∀j ∈ {1, . . . , m}, (6b)

xv ∈ [lv , uv] ∀v ∈ V , (6c)

I0, I1, . . . , Im ⊂ V , c j
I , bj ∈ R , l , u ∈ RV

Multilinear problem: rewriting

min
∑
I∈I0

c0
I zI (7a)

s.t.
∑
I∈Ij

c j
I zI ≤ bj ∀j ∈ {1, . . . , m}, (7b)

zI =
∏
v∈I

xv ∀I ∈ E := ∪m
j=0Ij , (7c)

xv ∈ [lv , uv] ∀v ∈ V . (7d)

14 / 24

Excursus: multilinear optimization (I)

Multilinear problem

min
∑
I∈I0

c0
I

∏
v∈I

xv (6a)

s.t.
∑
I∈Ij

c j
I

∏
v∈I

xv ≤ bj ∀j ∈ {1, . . . , m}, (6b)

xv ∈ [lv , uv] ∀v ∈ V , (6c)

I0, I1, . . . , Im ⊂ V , c j
I , bj ∈ R , l , u ∈ RV

Multilinear problem: rewriting

min
∑
I∈I0

c0
I zI (7a)

s.t.
∑
I∈Ij

c j
I zI ≤ bj ∀j ∈ {1, . . . , m}, (7b)

zI =
∏
v∈I

xv ∀I ∈ E := ∪m
j=0Ij , (7c)

xv ∈ [lv , uv] ∀v ∈ V . (7d)

14 / 24

Excursus: multilinear optimization (II)

It is known that there exists an optimal solution in which each xv is at its bound, that
is, xv ∈ {lv , uv} holds for all v ∈ V . Hence, by an affine transformation we can replace
by xv ∈ {0, 1} for all xv ∈ V .

The couple (V , E) gives rise to a multilinear polytope defined as the convex hull

ML(V , E) := conv{(x , z) ∈ {0, 1}V × {0, 1}E | zI =
∏
v∈I

xv ∀I ∈ E} (8)

of the multilinear set defined as the set of the solutions of (7c) with the constraint of
xv being binary.

As a side note, all of this can be interpreted in the setting of hypergraphs: in particular
with G = (V , E) being an hypergraph.

15 / 24

Excursus: multilinear optimization (II)

It is known that there exists an optimal solution in which each xv is at its bound, that
is, xv ∈ {lv , uv} holds for all v ∈ V . Hence, by an affine transformation we can replace
by xv ∈ {0, 1} for all xv ∈ V .

The couple (V , E) gives rise to a multilinear polytope defined as the convex hull

ML(V , E) := conv{(x , z) ∈ {0, 1}V × {0, 1}E | zI =
∏
v∈I

xv ∀I ∈ E} (8)

of the multilinear set defined as the set of the solutions of (7c) with the constraint of
xv being binary.

As a side note, all of this can be interpreted in the setting of hypergraphs: in particular
with G = (V , E) being an hypergraph.

15 / 24

Excursus: multilinear optimization (II)

It is known that there exists an optimal solution in which each xv is at its bound, that
is, xv ∈ {lv , uv} holds for all v ∈ V . Hence, by an affine transformation we can replace
by xv ∈ {0, 1} for all xv ∈ V .

The couple (V , E) gives rise to a multilinear polytope defined as the convex hull

ML(V , E) := conv{(x , z) ∈ {0, 1}V × {0, 1}E | zI =
∏
v∈I

xv ∀I ∈ E} (8)

of the multilinear set defined as the set of the solutions of (7c) with the constraint of
xv being binary.

As a side note, all of this can be interpreted in the setting of hypergraphs: in particular
with G = (V , E) being an hypergraph.

15 / 24

A first relaxation

The simplest polyhedral relaxation of ML(V , E) is the standard relaxation [SW24]

zI ≤ xv ∀v ∈ I ∈ E , (9a)
zI +

∑
v∈I

(1− xv) ≥ 1 I ∈ E , (9b)

zI ≥ 0 I ∈ E , (9c)
xv ∈ [0, 1] ∀v ∈ V . (9d)

Unfortunately, this relaxation is often very weak and so one could be interested in
finding additional constraints to tighten the relaxation.

16 / 24

Extended flower inequalities & Co

One possibility is adding the extended flower inequalities [SW24].

Definition 4.
Let S := {{v} | v ∈ V }, I ∈ E , and let J1, . . . , Jk ∈ E ∪ S be such that
J1 ∪ · · · ∪ Jk ⊃ I and Ji ∩ I ̸= ∅ hold for i = 1, . . . , k. The extended flower inequality
centered at I with neighbors J1, . . . , Jk is the inequality

zI +
k∑

i=1
(1− zJi) ≥ 1. (10)

Another possibility is the recursive (McCormick) linearization [Kha06].

17 / 24

Affine transformations (I)

A first step could consist in applying the standard relaxation to each monomial in every
loop constraint

⌊n/2⌋∑
j=0

∑
A⊂[n]
|A|=2j

(−1)j ∏
h∈A

skhkh+1

∏
l∈Ac

ckl kl+1 =
n∏

i=1
cki ki .

We have that cki ki ≥ 0 and, if we suppose that the angle differences are small, we have
that ckl kl+1 ≥ 0. We only need to define variables

c ′
ki ki = cki ki

V max
ki

2 , c ′
kl kl+1 =

ckl kl+1

V max
kl

V max
kl+1

, c ′
ki ki , c ′

kl kl+1 ∈ [0, 1]. (11)

18 / 24

Affine transformations (I)

A first step could consist in applying the standard relaxation to each monomial in every
loop constraint

⌊n/2⌋∑
j=0

∑
A⊂[n]
|A|=2j

(−1)j ∏
h∈A

skhkh+1

∏
l∈Ac

ckl kl+1 =
n∏

i=1
cki ki .

We have that cki ki ≥ 0 and, if we suppose that the angle differences are small, we have
that ckl kl+1 ≥ 0. We only need to define variables

c ′
ki ki = cki ki

V max
ki

2 , c ′
kl kl+1 =

ckl kl+1

V max
kl

V max
kl+1

, c ′
ki ki , c ′

kl kl+1 ∈ [0, 1]. (11)

18 / 24

Affine transformations (II)

The problem is that we can not make hypotesis on the sign of skhkh+1 , and rescaling it
in the following way

s ′
khkh+1 =

skhkh+1 + V max
kh

V max
kh+1

2V max
kh

V max
kh+1

←− NO

would generate a lot more monomials in (5).

The idea is then to write

skhkh+1 = V max
kh V max

kh+1 (2σkhkh+1 − 1)u′
khkh+1 , σkhkh+1 ∈ {0, 1}, ukhkh+1 ∈ [0, 1]. (12)

At this point
∏

ij sij =
∏

ij V max
i V max

j ×
∏

ij(2σij − 1)×
∏

ij u′
ij and∏

ij
(2σij − 1) = 1− 2r , where r + 2m =

∑
ij

(1− σij), r ∈ {0, 1}, m ∈ Z. (13)

19 / 24

Affine transformations (II)

The problem is that we can not make hypotesis on the sign of skhkh+1 , and rescaling it
in the following way

s ′
khkh+1 =

skhkh+1 + V max
kh

V max
kh+1

2V max
kh

V max
kh+1

←− NO

would generate a lot more monomials in (5). The idea is then to write

skhkh+1 = V max
kh V max

kh+1 (2σkhkh+1 − 1)u′
khkh+1 , σkhkh+1 ∈ {0, 1}, ukhkh+1 ∈ [0, 1]. (12)

At this point
∏

ij sij =
∏

ij V max
i V max

j ×
∏

ij(2σij − 1)×
∏

ij u′
ij and∏

ij
(2σij − 1) = 1− 2r , where r + 2m =

∑
ij

(1− σij), r ∈ {0, 1}, m ∈ Z. (13)

19 / 24

Numerical experiment

Preliminary numerical experiment (I)

Network details
▶ 14 buses, 5 generators, 20

lines;

▶ minimum cycle basis made up
of 7 loops, 5 loops of length 3
and 2 loops of length 6.

20 / 24

Preliminary numerical experiment (II)

no Jabr Jabr

no loop 116.090 5.449
loop 84.884 4.717

Table: Norm 2 error of loop constraints (5) with different constraint configurations. Results are
scaled by a factor of 102.

We studied the impact of the Jabr inequality and our relaxation of the loop constraint
on the norm 2 of the vector difference between the lhs and the rhs of (5).

Note that the error on the Jabr equality (∼= 10−9) is negligible with respect to the error
on the loop constraints when the Jabr inequality is added to the constraints.

21 / 24

Conclusions & future works

Conclusions

▶ Some models and relaxations for the OPF problem.

▶ The study of the exactness of the relaxation with respect
to the network structure.

▶ Some multilinear programming techniques and a first attempt
to adapt them to the linearization of the loop constraint.

22 / 24

Future works

Apply the extended flower inequalities or the recursive ◀

McCormick linearization to strengthen our formulation.

Make a comparison between our techniques and the 3-cycle / 4-cycle ◀

decomposition.

Make use of the strong sructure of the loop constraint, investigating ◀

the link between multilinear optimization and hypergraph theory [DK17].

23 / 24

Fine.

For other things I do → ambrogiomb.github.io

24 / 24

https://ambrogiomb.github.io/

References
[BEGL20] Bienstock, D., and Escobar, M., and Gentile, C., and Liberti, L. (2020).

Mathematical programming formulations for the alternating current optimal power flow
problem. 4OR, 18(3), 249-292.

[DK17] Del Pia, A., and Khajavirad, A. (2017). A polyhedral study of binary polynomial
programs. Mathematics of Operations Research, 42(2), 389–410.

[Jab06] Jabr, R. A. (2006). Radial distribution load flow using conic programming. IEEE
transactions on power systems, 21(3), 1458–1459.

[Kha06] Khajavirad, A. (2023). On the strength of recursive McCormick relaxations for binary
polynomial optimization. Operations Research Letters, 51(2), 146–152.

[KDS16] Kocuk, B. and Dey, S. S. and Sun, X. A. (2016). Strong SOCP relaxations for the
optimal power flow problem. Operations Research, 64(6), 1177–1196.

[SW24] Schutte, E. and Walter, M. (2024). Relaxation strength for multilinear optimization:
McCormick strikes back. International Conference on Integer Programming and
Combinatorial Optimization (pp. 393-404). Cham: Springer Nature Switzerland.

	Problem definition
	Trees and cycles
	Linearizations
	Numerical experiment
	Conclusions & future works
	Appendix

