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All code, model files, AMPL files, solution files available from:  
http://www.github.com/matias-vm

Paper (long version):    https://arxiv.org/abs/2312.04251

Preliminaries

Realistic data?

Matpower:  https://matpower.org/

PGLIB:  arXiv:1908.02788v2

GO Competition:  https://gocompetition.energy.gov/  

http://www.github.com/matias-vm
https://arxiv.org/abs/2312.04251
https://matpower.org/
arxiv:1908.02788v2
https://gocompetition.energy.gov/


NY ISO system:  
1814 buses
500+ generators
33 GW peak load

This is not a large system

A small example



Admittance matrix for line km
Complex current

Ohm’s Law

Skm Smk
k m

Skm != -Smk

Ikm Imk

complex power 
injected into km at k

AC Power basics:



Single-period ACOPF

Complex power injected into branch
km at k :

Complex power flow balance at k: 

Real power generated at generator i

Total real power generated at bus k
Real power demand at k

Convex function



HOW DO WE SOLVE ACOPF ??
This is a tale of two unrelated questions:

• Do we want a really good feasible solution?

• Do we want a tight lower bound?

• And … what is feasible?

First question:  finding a good solution.

Only one answer:  log barrier methods.

Knitro, Ipopt, home-cooked versions



Sample runtimes

Case # buses # branches # generators Runtime (sec) Solver

118 118 186 54 0.76 MIPS

1354pegase 1354 1991 260 1.95 MIPS

ACTIVSg2000 2000 3206 544 2.96 MIPS

3120sp 3120 3693 505 4.25 MIPS

9241pegase 9241 16049 1445 11.78 MIPS

ACTIVSg70k 70000 88287 10390 177.83*
*Apple M2

Knitro

Optimal?  Near optimal?  Any guarantees?



ACOPF as a QCQP
(Quadratically Constrained Quadratic 

Program)

Admittance matrix for line km

Use rectangular coordinates for voltages



ACOPF as a QCQP 

Use rectangular coordinates for voltages

Imaginary (“reactive”) part

Real (“active”) part





How well does this work on ACOPF?
Case Root relaxation 300 seconds Log barrier 

(Knitro)
Interior point 

time (s)

9 2264.30 5301.40* 5296.69 0.24

30 0.00 154.08 576.89 0.47

118 0.00 0.00 129660.69 0.24

1354pegase 23037.69 23037.69 74069.35 2.45

ACTIVSg2000 649917.91 649917.91 1228892.08 3.01

Why is the lower bound so bad? Especially at the root??

(Gurobi 10 on QCQP) 

How about upper bounds … using spatial branching?

Key task:  improve the lower bounds



Jabr inequality

Replace 
nonlinearities with 
new variables:

An important observation







20-core Xeon

Why are the bounds so good? Why are SOCPs so difficult?



Experiment:

100 rounds of

1. Select one Jabr constraint at random
2. Remove it
3. Solve remaining SOC

Why?

Value averaged over 100 rounds



Lemma: loss inequality implies source-destination flow paths.
Every unit of load is accounted for by a unit of generation.

Complex power flow definition

Real (active) component

Loss inequality:

(Physics)

B. and Munoz (2015):  use this

Not that

Linearly constrained relaxation yields 
good bounds! 



Why are losses important?

Each unit of load and loss is 
accounted for by a 
corresponding unit of generation

Applying the loss inequality forces the 
relaxation to use more generation.

Recall that all costs in ACOPF are due to 
generation.

100 + 60  (generation)  
>

60 + 75 + 20 = 155
(load)

A partial flow decomposition:



implies

Outer-envelope approx. to Jabr

Jabr



Experiment:

100 rounds of

1. Select one Jabr constraint at random
2. Remove it
3. Solve remaining SOC

Value averaged over 100 rounds

Formulation Value Formulation ValueLosses in Experiment



Experiment:

100 rounds of

1. Select 100 Jabr constraints at random
2. Remove them
3. Solve remaining SOC



Basic Physics:

i2 inequality

Data-dependent constants



Basic Physics:



Large SOCP relaxations are difficult for our solvers.  Why?  

IN ACOPF:

• Many of the Jabr (SOC) constraints are tight at optimum – they are needed.

• Why? If not there, relaxation inaccurate.

• Loss inequalities, which are outer-approximation of the Jabr constraints, yield good bounds.

Our solution: a cutting-plane algorithm 
• Outer-approximation of Jabr inequalities    (and i2 SOC inequalities)

• Cut management: 
• Remove old cuts that are slack
• Reject new cuts if too parallel to existing cuts.



20-core Xeon, recent

Knitro
Uses Gurobi

Jabr SOCP statistics:
Gurobi Knitro Mosek Gurobi Knitro Mosek

SOCP value SOCP time

i2 SOCP - -



An essential feature of power systems operation

ACOPF problems, in the real-world are never rarely run “from scratch”.
The power grid never stops …
Ideally, a new computation every 5 minutes.

There is a ‘prior’ solution – ACOPF was recently run on similar data.

Most data sets include information about this prior solution.

How can we take advantage of this information?

It seems difficult to appropriately warm-start SOCP solvers.

Our linear cutting-plane algorithm can take advantage of this mode of operation.

We assume that the cuts from the prior run are available.

They remain valid most of the time.  Why?

We use those cuts as a starting formulation.

Our favorite solvers are designed to handle this functionality well.





Multi-period cases

• T time periods

• Loads are given for each period

• Generator ramping rates link successive periods

Solution strategy

• Use single-period cuts to warm-start

• Cuts propagated to all periods

• Relaxation sees all periods at once

• Primal Heuristic for nonconvex AC



Cutting-plane algorithm Solvers



Well …

• All solvers fail on 
every SOCP

• Our AC heuristic 
also fails




