
1



Statistical Learning algorithms 
for forecasting wind production

Giuseppe De Nicolao, Marco Capelletti
Department of Electrical, Computer and Biomedical Engineering, 

University of Pavia

HEXAGON workshop – 18/06/2024



Summary

1. Introduction
2. The challenge of heteroschedasticity and asymmetry
3. Beta Regression Model with preconditioning
4. Results

3



Summary

1. Introduction
2. The challenge of heteroschedasticity and asymmetry
3. Beta Regression Model with preconditioning
4. Results

4



The team

Prof. G. De NicolaoM. Capelletti
Postdoctoral 
researcher

5



Introduction
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Given a wind farm one of the main goals is to estimate and 
characterize its power production at least a day ahead

Why is this important?

1. Economic Perspective:
• Participate in day-ahead electricity markets.
• Optimize bidding strategies in uncertain scenarios.

2. Grid Stability:
• Predict and manage grid imbalances.
• Activate storage or backup power in advance.



Wind power forecasting: 
A probabilistic approach
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• Power curves are characteristic 
functions that model and describe 
both individual wind turbines and 
virtually the entire wind farm

• Typical uses range from wind power 
forecasting to wind turbine condition 
monitoring
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Wind power forecasting: 
direct vs indirect approach
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Wind power forecasting: 
direct vs indirect approach

• Indirect approach
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Direct vs indirect approach
 in renewables forecasting
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Direct vs indirect approach: pros

Direct approach

• Faster deployment: given enough 
data, it is possible to directly 
identify a model with machine 
learning techniques

Indirect approach

• Greater interpretability : wake effect 
& physical phenomena

• Design and Upgrade made easier
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Direct vs indirect approach: cons

Direct approach

• Poor interpretability

• less flexible and adaptable: it works as 
long as the operating conditions are 
maintained

Indirect approach

• Complexity: more expertise is 
required

• Slower deployment



Forecasting problem – in practice
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VS



Direct Approach
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WSF 𝐏 "𝐖𝐀

Legend:
• WSF: Wind speed forecast
• PWA: Power actual



Indirect Approach
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Indirect Approach
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WSF

Legend:
• WSF: Wind speed forecast
• PWA: Power actual

Recalibrate and use the 
physical power curve or 
learn the model directly on 
the forecast data?

𝐏 "𝐖𝐀



We will now focus on the 
direct approach
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Power curve identification
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Dataset specifications:
• https://doi.org/10.528

1/zenodo.8253010
• https://cds.climate.co

pernicus.eu/Dataset Overview:

• Measurements: SCADA data from the first Senvion MM82 turbine at 
Penmanshiel wind farm, UK.

• Forecasts: UK Met Office wind speed forecasts at 8 horizons (6, 12, 
18, 24, 30, 36, 42, 48 hour ahead) starting from midnight.

• Time Period: August 1, 2017 - July 1, 2021.

• Training Set: August 1, 2017 - December 31, 2019.
• Test set: January 1, 2020 - July 1, 2021.

Dataset

https://doi.org/10.5281/zenodo.8253010
https://doi.org/10.5281/zenodo.8253010
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Dataset specifications:
• https://doi.org/10.528

1/zenodo.8253010
• https://cds.climate.co

pernicus.eu/Dataset Overview:

• Measurements: SCADA data from the first Senvion MM82 turbine at 
Penmanshiel wind farm, UK.

• Forecasts: UK Met Office wind speed forecasts at 8 horizons (6, 12, 
18, 24, 30, 36, 42, 48 hours) starting from midnight.

• Time Period: August 1, 2017 - July 1, 2021.

• Training Set: August 1, 2017 - December 31, 2019.
• Test set: January 1, 2020 - July 1, 2021.

Dataset

For our analysis, we will initially focus 
on the first forecasting horizon, which 
is 6 hour ahead

https://doi.org/10.5281/zenodo.8253010
https://doi.org/10.5281/zenodo.8253010
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Data processing

• Literature Review: Various techniques exist for identifying outliers in 
wind power vs wind speed data.

• SCADA Data Specifics: Our SCADA data includes a variable called ‘Lost 
Production to Downtime and Curtailment Total (kWh)’.

• Data Filtering: We retained only the values where 'Lost Production to 
Downtime and Curtailment Total (kWh)' is equal to zero, ensuring 
data quality by excluding periods of downtime and curtailment.
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The challenge of 
heteroschedasticity and asymmetry
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The challenge of 
heteroschedasticity and asymmetry
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To showcase wind power distribution across various wind speeds, we'll 
analyze histograms of wind power observations within specific speed 
ranges (distributions of power conditional on wind speed forecast).



The challenge of 
heteroschedasticity and asymmetry

30



The challenge of 
heteroschedasticity and asymmetry
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Right skewed



The challenge of 
heteroschedasticity and asymmetry
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The challenge of 
heteroschedasticity and asymmetry
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U shaped



The challenge of 
heteroschedasticity and asymmetry
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The challenge of 
heteroschedasticity and asymmetry

35

Left skewed



The challenge of 
heteroschedasticity and asymmetry
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We have see that the distribution of wind 
power conditional on wind speed forecasts is 
heteroschedastic and asymmetric with 
skewness changing its sign. How to deal with 
it? Should we resort to a non parametric 
approach?



New idea: Beta regression to cope with 
asymmetrically distributed errors

• Data distribution naturally bounded between zero 
and the maximum output power of the turbine, 
further supporting the inadequacy of the Gaussian 
distribution

• A distribution that best suits this type of data is the 
Beta distribution

• Parameter optimization is performed via Beta 
regression (rather than standard LS)
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By Pabloparsil - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.
php?curid=89335966
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Generalized Linear Models (GLM)

• Generalized Linear Model: allows for nonlinearity 
while preserving simplicity and interpretability of 
linear models

• The GLM generalizes linear regression by allowing 
the linear model to be related to the response 
variable via a link function
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Generalized Linear Model in a nutshell

Three components:

1. Linear predictor

2. Non linear link function 𝑔(#)

3. Probability distribution (Beta)
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𝑔 𝜁! = 𝜃" + 𝜃#𝑋!

𝑦!	~	𝐵𝑒𝑡𝑎(𝜁!)	

𝑋! 	:Wind speed𝜃", 𝜃#: Model parameters

𝑦! 	: Actual power



Beta error model – constant dispersion 𝜙 

From the Beta distribution:

𝑓 𝑦; 𝜇, 𝜙 =
Γ 𝜙

Γ 𝜇𝜙 Γ 1 − 𝜇 𝜙
𝑦$%&#(1 − 𝑦) #&$ %&#
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Beta error model – constant dispersion 𝜙

Where:

• 𝜇: mean of the Beta distribution
• 𝜙: precision parameter of the Beta distribution
• Γ ⋅ : the gamma function
• 𝑔 𝜇! = 𝜃" + 𝜃#𝑥!
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Beta error model – constant dispersion 𝜙 

We can compute the expected value 𝔼 #
and the variance 𝑉𝑎𝑟 # 	as: 

• 𝔼 𝑦! = 𝜇! = 𝑔$# 𝜃" + 𝜃#𝑥!

• 𝑉𝑎𝑟 𝑦! = %!(#	$	%!)
(#	$	)) , 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	𝜙
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Beta Regression Model with preconditioning

• Typical choices of the link function 𝑔(#) are the logistic or the double 
exponential functions

• Neither the logistic nor the double exponential are able to adequately 
models the wind power curve data

• New hybrid approach: use a power curve initially obtained with a 
parametric or non parametric method as a preconditioner
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Results

We compared two Beta regression models with constant and variable 
dispersion with three "naive" forecasting strategies and a very flexible 
non parametric approach:
1. Persistence model
2. Enhanced Persistence
3. Open loop model
4. Quantile Regression Forest (QRF)
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1. Persistence model

The persistence forecasting method assumes that the future predicted 
power !𝑦 𝑡 + 𝑘  will be the same as the current observed value 𝑦(𝑡):

!𝑦 𝑡 + 𝑘 = 𝑦(𝑡)

• Advantages: Simple, requires no training data, and often effective for short-
term forecasts.

• Limitations: Accuracy decreases with longer forecast horizons and in highly 
variable conditions.
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2. Enhanced Persistence

Improved Method: Combines persistence forecasting with an autoregressive model 
of order 1 (AR(1)) on residuals:

Step 1: Apply persistence model: 1𝑦 𝑡 + 1 = 𝑦(𝑡)

Step 2: Calculate residuals: 𝑒 𝑡 = 	 1𝑦 𝑡 − 𝑦 𝑡

Step 3: Apply AR(1) model on residuals: �̂� 𝑡 + 1 = 𝜙𝑒(𝑡),

 𝜙: AR(1) coefficient

Final Prediction: 1𝑦'()*( 𝑡 + 1 = 𝑦(𝑡) + 𝜙𝑒 𝑡 = 𝟏 + 𝝓 𝒚 𝒕 − 𝝓𝒚 𝒕 − 𝟏
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>𝑦*+,-+ is a 
weighted mean of 
𝑦(𝑡)  and 𝑦(𝑡 − 1) 



3. Open loop model

• Overview:
• Utilizes a periodic annual Weibull model on wind speed measurement data.
• Identifies the model by solving a maximum likelihood problem.
• Calculates the median of the model for the day of interest.
• Uses the median as input to the manufacturer's power curve model or to a 

power curve identified on wind speed and power actual data.
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3. Open loop model

Weibull Distribution:

𝑓 𝑥; 𝑠ℎ𝑎𝑝𝑒, 𝑠𝑐𝑎𝑙𝑒 =
𝑠ℎ𝑎𝑝𝑒 ∗ 𝑥

𝑠𝑐𝑎𝑙𝑒
.,-/*$#

∗ 𝑒$
0

.1-2*
"#$%&

𝑠𝑐𝑎𝑙𝑒
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3. Open loop model

Shape and scale are periodic models depending on the day of the year:

𝛽" + 𝛽# ∗ sin
𝜋 ∗ 𝑑𝑎𝑦_𝑜𝑓_𝑦𝑒𝑎𝑟

𝑇
+ 𝛽3 ∗ cos

𝜋 ∗ 𝑑𝑎𝑦_𝑜𝑓_𝑦𝑒𝑎𝑟
𝑇

+

+	𝛽4 ∗ sin
2𝜋 ∗ 𝑑𝑎𝑦_𝑜𝑓_𝑦𝑒𝑎𝑟

𝑇 + 𝛽5 ∗ cos
2𝜋 ∗ 𝑑𝑎𝑦_𝑜𝑓_𝑦𝑒𝑎𝑟

𝑇
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3. Open loop model
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3. Open loop model
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4. Quantile regression forest

• QRFs, an evolution of random forests, 
focus on estimating conditional 
quantiles, offering insights into 
response variable distributions.

• QRF requires careful hyperparameter 
tuning to avoid overfitting.

•  A cross-validation procedure was 
conducted using the Python Optuna 
toolbox to optimize the model's 
hyperparameters.
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Performance indices

The following performance indices were used:
1. Weighted Mean Absolute Percentage Error (WMAPE):

WMAPE% = ∑!"#
$ ,!&-,!
∑!"#
$ ,!

×100 

2. Mean Absolute Error (MAE):

MAE = #
(
∑!.#
( 𝑦! − 1𝑦!  
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C𝑦: arithmetic mean of 𝑦!
DE𝑦!: arithmetic mean of E𝑦!



Performance indices

3. Root Mean Square Error (RMSE):

RMSE =
1
𝑛
G
!.#

(

𝑦! − 1𝑦! /

4. Coefficient of Determination (𝑅3):

𝑅/ = ∑!"#
$ ,!&0, -,!&0-,

∑!"#
$ ,!&0, % ∑!"#

$ -,!&0-,
%

/
×100 
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C𝑦: arithmetic mean of 𝑦!
DE𝑦!: arithmetic mean of E𝑦!



Results on test data
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The Variable Dispersion Beta Regression 
Model performed best in terms of 
WMAPE and MAE, and effectively 
characterizes both training and test data 
distributions



Results on test data
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The Constant Dispersion Beta Regression 
Model performed well, effectively 
describing data distribution and 
providing a simpler solution



Results on test data
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• The quantile regression forest 
achieved performance comparable to 
that of the Beta regression. 

• Despite using a cross-validation 
procedure, the resulting model still 
exhibits some overfitting.



Results

62

Model
WMAPE (%) MAE (kW) RMSE (kW) 𝑹𝟐(%)

Train Test Train Test Train Test Train Test

Persistence 93.72 85.17 599.50 578.34 821.19 813.53 5.61 12.45

Enhanced P. 85.99 79.96 549.49 543.00 723.57 743.46 7.63 13.09
Open Loop 78.14 77.85 499.26 528.70 656.75 711.25 9.35 12.08
QRF 59.92 58.32 382.86 396.07 535.14 584.53 39.42 38.70

Const. Beta 63.75 58.72 407.32 398.75 535.64 559.39 36.08 40.36
Variab. Beta 62.99 58.31 402.44 395.98 540.55 566.46 35.79 39.86

The weakest performances came from 
the three naive models, especially the 
persistence approach



Results
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What happens when we 
change forecasting horizon?



Results
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Costant dispersion models Variable dispersion models

Median models Median models



Results
Probabilistic models are useful in optimizing bidding strategies aiming 
to maximize profit in uncertain scenarios.

 key takeaways include:
• Despite the complexity of power distribution as wind speed varies, 

the Beta regression model appears to adequately characterize all the 
different shapes of the distribution.
• An alternative non-parametric method is the quantile regression 

forest, though it requires more careful hyperparameter tuning and is 
less interpretable compared to Beta regression models.
• Both the Beta regression approach and the quantile regression forest 

outperformed naive approaches.
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For any question:

marco.capelletti02@universitadipavia.it
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Thanks for your attention
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