

Considering the feedback of grid users when planning distribution networks

HEXAGON workshop on power network optimization

Bertrand Cornélusse, University of Liège, Belgium

Bergamo, June 2024

Overview

- 1. Introduction
- 2. Distribution network development planning
- 3. Grid user's optimization problem
- 4. Coupling the problems
- 5. Results and future work

About the "Smart Microgrids Team" at ULiège

- Around 10 researchers applying optimization, machine learning, and control to power systems (and power electronics)
- working on (from real-time to long-term)
 - Hardware-in-the-loop (HiL) for the design and simulation of inverter-based

resources

- Real-time optimization in distribution networks (using HiL)
- Microgrids and energy communities operation and sizing
- Distribution network planning
- Senegal's electrical infrastructure planning

About me

- PhD thesis (2010): apply ML to approximate unit commitment for fast intraday reaction (with EDF)
- European Market coupling algorithm (Euphemia) at N-SIDE (until 2016)

Savelli, I., Cornélusse, B., Giannitrapani, A., Paoletti, S., & Vicino, A. (2018). A new approach to electricity market clearing with uniform purchase price and curtailable block orders. Applied energy, 226, 618-630.

- Since then: various projects on distribution networks and energy communities.
- Looking for collaboration, industrial and academic, on "distribution network planning"

Context I

Energy transition

- Large increase in distributed generation
- Shift to electricity consumption for mobility, heating and cooling
- Battery storage

Context II

Context III

Context IV

Context V

 Image: Photovoltaic panels

 I

Topological change: dashed line 6-8 can be energetized if the line 4-6 is tripped Distribution networks require upgrades, but other possibilities

- Active network management (ANM) schemes
- Home energy management systems
- Energy communities

The current entering a network and the voltage along a feeder fluctuate more and more

Figure 34: Current and voltage comparison for all the winter cases

Source: Randles, D., By, P., Navarro Espinosa, A., & Ochoa, L. (2015). Low voltage Network Models and Low Carbon Technology Profiles. www.enwl.co.uk/lvns.

Long-term anticipation is hard.

Instead of relying (only) on forecasts (open loop), let's account for user feedback on network planning and regulatory decisions.

Figure 35: Current and voltage comparison for all the summer cases

Research questions

- 1. How should networks be reinforced?
- 2. How should (or will) users invest?
- 3. How do network investment policies and regulations impact the equilibrium between the network and users?
- 4. What are good policies for the energy transition, good for everyone?
- 5. Can ANM or energy communities allow to reduce hardware investment?

Methodology to answer these questions

Use optimization to represent the "game" between the distribution system operator (DSO) and network users

- DSO develops the networks based on patterns of users' withdrawals and injections, and available budget
- Network users minimize their bill using all available options (grid connection,

local generation, storage, etc.)

Solve this game for a representative set of cases (grid topologies, characteristics of users, etc.) and several scenarios

- Network tariffs
- Energy prices
- Costs of storage, renewable generation

Challenges

- How to model the game?
- Generate a representative set of cases (get data, LV, MV)
- Model uncertainty (available technologies and associated costs, energy costs, etc.)
- Model the behavior of users (are they always perfectly rational?)

- Handle the long-term and multi-stage nature of the problem (computational burden)
- Handle unbalanced low-voltage networks
- Evaluate or constrain CO₂ emissions and/or other limits

Distribution network development planning

Distribution network development planning (DNDP)

Given

- an area with demand and injection nodes (users that may be connected to the distribution grid)
- substations locations (connection to the existing higher-level grid)
- possible routes between substations and grid users where to put cables
- costs for cable categories, substations, losses, etc.

- an estimate of withdrawal/injection for grid users (time-series)
- some pre-existing substations and cables (and their lifetime)
- operational limits
- (a budget)

Determine

- which substations to build or reinforce
- where to put new cables and reinforce existing ones

DNDP as a mixed-integer non-linear program I

Solve the following (deterministic single-stage) mathematical program over a sufficiently long time horizon:

nin	TLCC(GRID_CAPEX, losses)		(1a)
s.t.	nodal power balance equations	$orall t \in \mathcal{T}$	(1b)
	power flow equations	$orall t \in \mathcal{T}$	(1c)
	operational limits	$orall t \in \mathcal{T}$	(1d)
	radial operation	$orall t \in \mathcal{T}$	(1e)

It is a MINLP.

DNDP as a mixed-integer non-linear program II

Variables:

- Design: which route to select, which cable (integer), substations capacities (continuous)
- operation (indexed by time): voltages, currents, active and reactive powers

Objective (Greek variables are parameters):

$$\min \underbrace{\left(C^{cond} + C^{sub} \right)}_{\text{GRID}_{\text{CAPEX}}} + \alpha \underbrace{\sum_{t \in \mathcal{T}} \left(C^{\text{loss}}_{t} + \omega' s^{\prime}_{t} \right)}_{\text{OPEX}}$$

DNDP as a mixed-integer non-linear program III

Constraints:

- Non-linear: power flow equations
- Combinatorial: choice of routes and cables, radiality constraints

Grid user's optimization problem

Grid users as microgrids

Grid users' optimization problem

Given

- a demand (e.g. a time series of inflexible demand, an electric vehicle to charge with some flexibility, etc.)
- available area for installing renewable generation (PV)
- costs for PV panels, inverters, storage, energy from the grid, etc.

- some pre-existing devices (and their lifetime)
- (a budget)

Determine

- which grid connection to buy, which devices to install
- the operation policy of the devices (storage, generator, EV, etc.)

Grid users' microgrid sizing I

Solve a linear program over a sufficiently long time horizon ${\mathcal T}$

min	TLCC(USER_CAPEX, USER_OPEX)		(2a)
s.t.	nodal user's power balance	$orall t \in \mathcal{T}$	(2b)
	bound device power by its capacity	$orall t \in \mathcal{T}$	(2c)
	state update rules	$orall t \in \mathcal{T}$	(2d)
	device capability diagrams	$orall t \in \mathcal{T}$	(2e)

Kept linear for computational reasons (anticipating on the sequel).

Grid users' microgrid sizing II

Continuous variables: PV (inverter and panels) capacity, storage (inverter and energy) capacity, grid connection capacity (s_i^{grid}) , device active and reactive powers.

Objective of user *i*:

$$\min \underbrace{c_{i}^{PV} + c_{i}^{st} + c_{i}^{grid}}_{USER_CAPEX} + \alpha \underbrace{\sum_{t \in \mathcal{T}} \Delta t \left(p_{i,t}^{imp} (\pi^{EI} + \Pi^{EI}) + p_{i,t}^{exp} (-\pi^{EE} + \Pi^{EE}) \right)}_{USER_OPEX}$$

Greek letters are parameters.

Coupling the problems

Connections between the two problems

DNDP and microgrid seem to be decoupled problems.

However, they are tightly linked, for instance:

- ▶ The ability for a user *i* to withdraw from / inject into the grid (*s_i* [kVA]) is a function
 - of the network "strength"
 - of other users s_j , $\forall j \neq i$
- The DSO's investment must be funded by the grid tariffs × grid users' power and energy usage (over an investment period)

The bilevel model I

- min TLCC(GRID_CAPEX, losses) (upper-Level)
- s.t. : DSO Constraints

DSO budget balance constraint

Grid users' optimality (lower level) : $(p^{imp}, p^{exp}, q^{imp}, q^{exp}, s^{grid})$ $\in \operatorname{argmin} \left\{ \sum_{i} TLCC_{i}(USER_CAPEX, USER_OPEX) | \text{ s.t.: grid users' constraints} \right\}$

The bilevel model II

Budget balance constraint

$$\underbrace{(\mathbf{1}+\tau)^{\Gamma}\left(C^{sub}+C^{cond}\right)+\Gamma\alpha\sum_{t\in\mathcal{T}}C_{t}^{loss}}_{\text{DSO costs + margin}}\leq\underbrace{\Gamma\sum_{i\in\mathcal{B}_{u}}\left(c_{i}^{grid}+\alpha\sum_{t\in\mathcal{T}}c_{it}^{grid}\right)}_{\text{Users' grid costs}}$$

where τ is an "interest rate for the DSO" and with

$$c_{i,t}^{grid} = \Delta t \left(p_{i,t}^{imp} \Pi^{EI} + p_{i,t}^{exp} \Pi^{EE}
ight)$$

Results and future work

We consider a 23-nodes medium voltage network

MPV: Maximum PV capacity per bus (MVA), STO: add storage capability, EIP: energy import price (k€/MWh), EV: add electric vehicles' consumption, HP: add heat pumps' consumption. False (F), true (T).

Case	MPV	STO	EIP	EV	HP
BASE 0	0	F	0.3	F	F
1	0.4	F	0.3	F	F
2	0.4	т	0.3	F	F
3	0.4	т	0.6	F	F
4	0	F	0.3	т	т
5	0.4	F	0.3	т	т
6	0.4	т	0.3	т	т
7	0.4	т	0.6	т	т

Results

Table 1: Results obtained with the bilevel model

DNO: DNO's total annual amortized cost (M€/y), Users: Users' total annual amortized cost(M€/y), UPVC: Users' PV annual amortized cost of investments (M€/y), UStoC: Users' storage annual amortized cost of investments (M€/y), UGCC: Users' annual grid connection cost (M€/y), USS: Users' average self-sufficiency (%), USC: Users' average self-consumption (%).

Casa	DNO	Users	UPVC	UStoC	UGCC	USS	USC
Case	M€/y	M€/y	M€/y	M€/y	M€/y	%	%
BASE 0	1.05	7.28	0.00	0.00	2.35	0	-
1	1.09	5.82	0.24	0.00	1.95	25	32
2	0.90	5.07	0.25	0.96	1.20	46	60
3	0.89	7.70	0.25	1.03	1.18	47	61
4	2.40	23.30	0.00	0.00	7.38	0	-
5	2.40	21.70	0.25	0.00	6.97	9	37
6	1.64	20.20	0.32	2.15	5.24	22	93
7	1.62	32.70	0.32	2.26	5.20	23	95

CO_2 analysis

Table 2: CO₂ data

Transformer	600	ton/MVA
Aluminum	16	ton/ton Al
Al density	2.7	ton/m³
PV	1700	ton/MWp
Storage	200	ton/MWh
Energy from grid	0.128	ton/MWh

Table 3: CO₂ results

Substations	62.7	T/year
Lines	0.3	T/year
Losses	1.7	T/year
PV	571.0	T/year
Storage	16.7	T/year
Net grid consumption	555.0	T/year
PV	47	kg/MWh
Grid	128	kg/MWh

Conclusion and future work I

I think this is a rich framework but much still has to be done.

- ▶ Dynamic / capacity tariffs → change input scenarios
- \blacktriangleright Limited budget for grid users \rightarrow add a (linear) budget constraint
- ▶ Bounded rationality → a subset of users will act optimally, a subset will act close to optimal, others will not do anything
- ► Active network management (e.g. curtailment, impact of using reactive power of inverters, fixed cos phi, P(u) curve, Q(u) curve) → relax bounds on variables, additional constraints
- $\blacktriangleright \quad Dynamic network reconfiguration \rightarrow split topology variable per time step$

Conclusion and future work II

- Compare myopic to perfect foresight policy e.g. model more realistic storage operation (force charge and discharge based on current state while staying in SoC range)
- ► Use flexibility of batteries and EVs (V2G) → Consider EVs as storage systems with extra availability constraints

Acknowledgments

Active contributors on this work

- Manon Cornet
- Geoffrey Bailly
- Mevludin Glavic

Thanks to ORES and RESA (Belgian DSOs) for discussions and input.

Link to the working paper

Bailly, G., Cornet, M., Glavic, M., & Cornélusse, B. (2024). A Bilevel Programming Approach for Distribution Network Development Planning. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/319836

