# The Segmented Pay-as-Clear Approach for (Energy) Markets

#### Antonio Frangioni<sup>1</sup> Fabrizio Lacalandra<sup>2</sup>

<sup>1</sup>Dipartimento di Informatica, Università di Pisa <sup>2</sup>Autorità di Regolazione per Energia, Reti e Ambiente

The HEXAGON Workshop on power grids Bergamo (Italy), June 19, 2024

# Outline

#### A brief introduction to Pay-as-Clear (energy) markets

#### 2 The Problem

- Oiscussing the problem
- 4 Our solution, in details
- 5 Can it work?
- 6 Can it be applied to practical markets?

#### 7 Conclusions

## The Pay-as-Clear market clearing mechanism

- Market = sellers + buyers of a fungible divisible commodity (energy)
  - set S of sell offers  $\langle sp_j, sq_j \rangle$ : will sell ( $\leq$ )  $sq_j$  for a price  $\geq sp_j$
  - set B of purchase bids  $\langle bp_i, bq_i \rangle$ : will buy ( $\leq$ )  $bq_i$  for a price  $\leq bp_i$
- Nondecreasing offer curve (not function)  $O(\pi) = \sum_{j: sp_i \ge \pi} sq_j$
- Nonincreasing demand curve (not function)  $D(\pi) = \sum_{j: bp_i \leq \pi} bq_j$
- Clearing price  $\pi^* =$  "where  $O(\pi)$  and  $D(\pi)$  meet"  $\implies$  total amount  $q^*$  (of energy) exchanged over the market
- Forget about market failures and degeneracy ...
- But why Pay-as-Clear?









































• Everyone paid at the clearing price  $\pi^*$ 

3/33



#### Everyone loves it because it's an LP

- Let's simplify: fixed demand  $\equiv$  only sell offers ( $\approx$  true in electricity)
- Primal / dual market clearing problems:

$$\begin{array}{ll} \min \sum_{j \in S} sp_j s_j & (1) & \max \sum_{j \in S} sq_j\eta_j + \pi d & (4) \\ 0 \leq s_j \leq sq_j & j \in S & (2) & \eta_j + \pi \leq sp_j , \ \eta_j \leq 0 & j \in S & (5) \\ \sum_{j \in S} s_j = d & (3) & \end{array}$$

• Primal feasibility + dual feasibility + complementary slackness

$$\eta_j(s_j - sq_j) = 0 \qquad j \in S \qquad (6)$$
  

$$(sp_j - \eta_j - \pi)s_j = 0 \qquad j \in S \qquad (7)$$

 $\Longrightarrow$  optimal  $\pi^*$  the market clearing price

• Easy to see with just a bit of logic, but I like it different

## I love it even more because it's a Lagrangian

• Lagrangian relaxation of (1)–(3) w.r.t. (3) (multiplier  $\pi$ ):

min 
$$\sum_{j \in S} sp_j s_j + \pi (d - \sum_{j \in S} s_j) = \pi d + \sum_{j \in S} (sp_j - \pi) s_j$$
 (8)  
 $0 \le s_j \le sq_j$   $j \in S$  (2)

clearly separable in j, (3) only linking constraint

• 
$$\pi > sp_j \implies sp_j - \pi < 0 \implies s_j^*(\pi) = sq_j$$
, i.e.,  
as soon as the price is > than my asking price I sell everything

• 
$$\phi(\pi)$$
 dual function,  $g(\pi) = d - \sum_{j \in S} s_j^*(\pi)$  its (sub)gradient

• 
$$\pi^*$$
 optimal  $\iff g(\pi^*) = 0 \iff \sum_{j \in S} s_j^*(\pi) = d$ 

- Adjust  $s_i^*$  for which  $sp_j = \pi^*$  to make it work (nondifferentiable)
- Not too important, just faster than juggling complementary slackness

#### It has many nice properties

- Day-Ahead Market solved every day for every hour of the next day (plus primary/secondary reserve markets, ancillary services, ...)
- Long-term average gives long-term price signal: how much is worth investing in new generation (5+y to build, 10+y amortization, ...)
- Hourly price gives short-term price signal: how much energy is worth in this specific hour, crucial for Unit Commitment (peak shaving ...)
- Pay-as-bid (apparently) not as good (don't ask ...)
- Can resist complications: variable demand, (DC) network constraints, strange market constructs (unique national price, complex bids, ...) because it's an LP or MPCC ≡ NP-hard, but we are happy with that
- Everyone's happy then, so what's the problem?

# Outline

#### A brief introduction to Pay-as-Clear (energy) markets

#### 2 The Problem

- 3 Discussing the problem
- Our solution, in details
- 5 Can it work?
- 6 Can it be applied to practical markets?

#### 7 Conclusions

#### The Problem



#### The Problem – Root Cause





• W.r.t. "normal" times



• W.r.t. "normal" times gas prices shot up



• W.r.t. "normal" times gas prices shot up  $\implies$  gas-fired units increased  $sp_i$ 



• W.r.t. "normal" times gas prices shot up  $\implies$  gas-fired units increased  $sp_j$ 

•  $\pi^*$  shot up,



W.r.t. "normal" times gas prices shot up ⇒ gas-fired units increased sp<sub>j</sub>
 π\* shot up,



• W.r.t. "normal" times gas prices shot up  $\implies$  gas-fired units increased  $sp_i$ 

•  $\pi^*$  shot up, producers corked spumante,
# The Problem – Technical – graphically



• W.r.t. "normal" times gas prices shot up  $\implies$  gas-fired units increased  $sp_i$ 

•  $\pi^*$  shot up, producers corked spumante,

# The Problem – Technical – graphically



• W.r.t. "normal" times gas prices shot up  $\implies$  gas-fired units increased  $sp_i$ 

•  $\pi^*$  shot up, producers corked spumante, consumers went down in flames

# The Problem – Technical – graphically



- W.r.t. "normal" times gas prices shot up  $\implies$  gas-fired units increased  $sp_i$
- $\pi^*$  shot up, producers corked spumante, consumers went down in flames
- The real energy cost had increased way less than the clearing price

SPaC@HEXAGON

#### A brief introduction to Pay-as-Clear (energy) markets

#### 2 The Problem

#### Oiscussing the problem

Our solution, in details

#### 5 Can it work?

6 Can it be applied to practical markets?

#### 7 Conclusions

## Us discussing energy problems goes a loooooong way



## What Fabrizio wanted

- Partition  $S = S^r \cup S^g$ :  $S^r$  = reserved (renewables) market,  $S^g$  = general (gas-fired) market
- Have producers in each market only slog it out among themselves
   different prices for the same commodity, reflecting fundamentally different cost structure of sets of producers
- Both markets must satisfy the same demand
- Economists were sharpening forks and lighting up pyres, but that was not what was bothering me
- How can you have two markets be separate, and then "magically" agree on the demand each will satisfy?
- Never believed in magic, and never were afraid to tell
- Some wishes just never come true, I'm not the fairy godmother!



### How the discussion went







#### 1 A brief introduction to Pay-as-Clear (energy) markets

#### 2 The Problem

- 3 Discussing the problem
- Our solution, in details
  - 5 Can it work?
  - 6 Can it be applied to practical markets?

#### 7 Conclusions

## Segmented-Pay-as-Clear, version I: bilevel program

$$\begin{split} \min_{d^r,d^g} & \pi^r d^r + \pi^g d^g \\ d^r + d^g &= d \quad , \quad d^r \geq 0 \quad , \quad d^g \geq 0 \\ & \pi^r \in \left\{ \begin{array}{cc} \arg\max & \sum_{j \in S^r} sq_j\eta_j \ + \ \pi^r d^r \\ & \eta_j + \pi^r \leq sp_j \ , \ \eta_j \leq 0 \quad j \in S^r \end{array} \right. \\ & \pi^g \in \left\{ \begin{array}{cc} \arg\max & \sum_{j \in S^g} sq_j\eta_j \ + \ \pi^g d^g \\ & \pi^g,\eta & \eta_j + \pi^g \leq sp_j \ , \ \eta_j \leq 0 \quad j \in S^g \end{array} \right. \end{split}$$

- The two markets compete among them for the demand
- Producers in each market compete among them as usual but not directly with producers in the other market
- The objective is bilinear (nonconvex), but bilevels are hard anyway: throw it to Gurobi via BilevelJump, it'll eat it
- Cannot do worse than PaC (will be obvious shortly)

Frangioni, Lacalandra (DI – UniPi, ARERA)

SPaC@HEXAGON

### Segmented-Pay-as-Clear, version II: MPCC

$$\min \pi^{r} d^{r} + \pi^{g} d^{g}$$
(9)  

$$d^{r} + d^{g} = d , d^{r} \ge 0 , d^{g} \ge 0$$
(10)  

$$0 \le s_{j} \le sq_{j}$$
(2)  

$$\sum_{j \in S^{r}} s_{j} = d^{r}$$
(11)  

$$\eta_{j} + \pi^{r} \le sp_{j} , \eta_{j} \le 0$$
(2)  

$$\sum_{j \in S^{g}} s_{j} = d^{g}$$
(12)  

$$\sum_{j \in S^{g}} s_{j} = d^{g}$$
(13)  

$$\eta_{j} + \pi^{g} \le sp_{j} , \eta_{j} \le 0$$
(j \epsilon S^{g} (14)  

$$\eta_{j}(s_{j} - sq_{j}) = 0$$
(j \epsilon S^{r} (15)  

$$(sp_{j} - \eta_{j} - \pi^{r})s_{j} = 0$$
(j \epsilon S^{g} (17)

• Bilinear objective (9) and complementarity constraints (15)–(17)

• But one bilinearity can kill the other

# Hocus Pocus, nonlinearity vanish! Thanks Medhi Madani

- Actually, a well-known trick in this line of business
- Multiply (30) by  $\pi^r$  to get

$$\pi^r \sum_{j \in S^r} s_j = \pi^r d^r$$

• Sum (16) over  $j \in S^r$  and rearrange:

$$\sum_{j\in \mathcal{S}^r}(sp_j-\eta_j)s_j=\pi^r\sum_{j\in \mathcal{S}^r}s_j=\pi^rd^r$$

• Now (15) gives  $\eta_j s_j = \eta_j s q_j$ , thus

$$\pi^r d^r = \sum_{j \in S^r} (sp_j s_j - \eta_j sq_j)$$
(18)

• Repeat the arguments for  $j \in S^g$  and  $\pi^g$  to get

$$\pi^{r}d^{r} + \pi^{g}d^{g} = \sum_{j \in S} (sp_{j}s_{j} - \eta_{j}sq_{j})$$
<sup>(19)</sup>

• One nonlinearity has vanished in thin air

# Segmented Prices-as-Clear, the Final Reformulation

- Only one market, but with a limit on the energy from S<sup>r</sup>:
- min  $\sum_{i \in S} sp_j s_j$ (1) $\max \sum_{i \in S} sq_j\eta_j + \pi d + \pi^r d^r$ (21) $0 \leq s_i \leq sq_i \quad j \in S$  (2)  $\eta_i + \pi \leq sp_i \qquad j \in S^g$ (22) $\eta_i + \pi + \pi^r \leq sp_i \quad j \in S^r$  $\sum_{i\in S^r} s_i \leq d^r$ (23)(20)*i* ∈ *S* (24) $\sum_{i\in S} s_i = d$  $\eta_i \leq 0$ (3)  $\pi^{r} < 0$ (25)
- g-market clears at  $\pi$ , r-market clears at  $\pi + \pi^r < \pi$  (cf. (25))  $\implies$ cannot be worse than PaC, equal if  $d^r$  "too large"  $\implies \pi^r = 0 \implies$  $(\pi + \pi^r) \sum_{j \in S^r} s_j + \pi(d - \sum_{j \in S^r} s_j) = \pi d + \pi^r \sum_{j \in S^r} s_j = \pi d + \pi^r d^r$
- Compact reformulation of SPaC, can be linearised using (18):  $\min \left\{ \pi d + \pi^r d^r : (\pi, \pi^r) \in \operatorname{argmax} \left\{ (21)-(25) \right\} \right\}$

• Easy to write as MPCC using (1)–(25) + their complementary slackness

#### A brief introduction to Pay-as-Clear (energy) markets

#### 2 The Problem

- 3 Discussing the problem
- Our solution, in details

#### 5 Can it work?

6 Can it be applied to practical markets?

#### 7 Conclusions

# Can it be gamed?

- Of course it can: everyone offers the same (collusion)
- Bad case: all bids on g-market same as PaC, all on the r-market  $\pi^* \varepsilon$  $\implies \pi^g = \pi^*, \ \pi^r = -\varepsilon \equiv$  negligible decrease of total system cost
- However, this reeks of collusion three miles off
- A result is proven in the paper that roughly speaking says: if enough bids in the r-market are "fair" then strategic bidders in the r-market can only achieve a fraction of π\*-PaC that decreases as d<sup>r</sup> → d (the size of the r-market increase)
- Complicated, but: if  $d^r = 0.8d + \text{enough bids in } S^r$  "low", then cost on r-market  $\leq 33\%$  of  $\pi^* - \text{PaC} \equiv$  large decrease of system cost
- Many ifs and buts, but it does seem to indicate: you need a rather serious collusion to neuter the effect

SPaC@HEXAGON

- Hard to say, can try to get clues by Agent-Based simulations
- Simple rules to emulate behaviour of (not-too-smart) rational players:
  - if my offer was only partly accepted I very likely stay put
  - if my offer was totally accepted I may (not too likely) increase it
  - if my offer was rejected I will likely decrease it
  - if my offer is rejected for k consecutive rounds I will surely decrease it
  - anyway I will never offer below my baseline (CAPEX + OPEX) realistic cost (wind, solar, ROR hydro, hydro, coal, CGT, gas turbines, ...)
- Tested with demand a varying fraction of  $d^{\max}$  (high/low demand hours)
- Lots of parameters, set with common sense (Fabrizio knows) + minimal tuning (don't want to be cherry-picking your agents)
- Not a proof by all means, but an accepted way to get some clues

## AB simulations results I





• System costs for the 30-agents test case with  $d = 60\% d^{\text{max}}$ 

120%

# AB simulations results II

| d / d <sup>max</sup> | 40%    | 45%    | 50%    | 55%    | 60%    | 65%    | 70%    | 75%    | 80%    | 85%    |
|----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| $\pi^{r}$            | 73.29  | 85.12  | 96.53  | 97.19  | 100.09 | 100.77 | 104.77 | 106.16 | 111.06 | 110.69 |
| $\pi^{g}$            | 122.57 | 123.43 | 132.05 | 139.85 | 145    | 147.66 | 150.83 | 153.19 | 158.14 | 164.31 |
| $\pi^{PaC}$          | 74.74  | 122.22 | 131.67 | 139.47 | 144.79 | 147.43 | 150.7  | 152.98 | 157.79 | 164.02 |
| $C(S^r)/C(S^g)$      | 97.487 | 31.25  | 6.044  | 3.01   | 2.03   | 1.508  | 1.238  | 1.026  | 0.899  | 0.753  |
| TC_SPaC/TC_PaC       | 98.36% | 70.24% | 76.19% | 75.40% | 76.99% | 78.26% | 80.48% | 81.74% | 83.44% | 82.88% |
| Min                  | 74.0%  | 66.4%  | 71.0%  | 70.8%  | 72.7%  | 74.9%  | 77.0%  | 78.2%  | 79.0%  | 78.2%  |
| Max                  | 101.5% | 100.7% | 99.7%  | 99.3%  | 98.7%  | 99.6%  | 100.4% | 100.0% | 99.1%  | 100.3% |
| Std                  | 3.7%   | 3.3%   | 2.7%   | 2.7%   | 2.6%   | 2.3%   | 2.9%   | 2.9%   | 2.9%   | 3.3%   |

- Sample results with 100 agents (other similar except with 6, too few)
- Variable  $d / d^{max}$  simulates demand fluctuation over day
- Short-term price signal still there ( $\implies$  long-term one)
- Consistent reduction in total cost save for very low demand
- Quite stable results (low std)

## AB simulations results takeaways

- System does reach some sort of (realistic?) equilibrium
- Agents correctly learn how to exploit different demand scenarios
- Long- and short-term price signals on  $\pi^g$  conserved ( $\approx$  PaC)
- *S<sup>r</sup>* producers still more than decently retributed (realistic prices), just not as much as *S<sup>g</sup>* producers (makes sense)
- Significant total system cost reductions (wish I could have 0.001% ...), yet not unrealistic one (historical bids gives > 80%, had tell a referee)
- All in all, surprisingly (too?) reasonable results

#### A brief introduction to Pay-as-Clear (energy) markets

#### 2 The Problem

- 3 Discussing the problem
- Our solution, in details

#### 5 Can it work?

#### 6 Can it be applied to practical markets?

#### 7 Conclusions



# Case of elastic demand

Frangioni,

| Lacalandra (DI – UniPi, ARERA) SPaC@HEXAGON                                           | HEXAGON 2024         | 26 / 33 |
|---------------------------------------------------------------------------------------|----------------------|---------|
| $(\eta_j - \pi + s p_j) s_j = 0$                                                      | $j\in S^{g}$         | (39)    |
| $(\eta_j+\pi^r-\pi+sp_j)s_j=0$                                                        | $j\in \mathcal{S}^r$ | (38)    |
| $\mu_i(bq_i-b_i)=0$                                                                   | $i \in B$            | (37)    |
| $\eta_j(sq_j-s_j)=0$                                                                  | $j\in S$             | (36)    |
| $\pi^r(d^r-\sum_{j\in \mathcal{S}^r}s_j)=0$ , $pi^r\geq 0$                            |                      | (35)    |
| $\sum_{i\in B}(bp_ib_i-\mu_ibq_i)\geq \sum_{j\in S}(\eta_jsq_j+$                      | $sp_js_j$ )          | (34)    |
| $\eta_j - \pi \geq - s p_j \qquad , \ \eta_j \geq 0$                                  | $j\in S^{g}$         | (33)    |
| $\eta_j + \pi^{m{r}} - \pi \geq - s p_j \hspace{0.2cm}, \hspace{0.2cm} \eta_j \geq 0$ | $j \in S^r$          | (32)    |
| $\mu_i + \pi \ge b p_i \qquad , \ \mu_i \ge 0$                                        | $i \in B$            | (31)    |
| $\sum_{j\in S^r} s_j \leq d^r \leq \sum_{i\in B} sq_i$                                |                      | (30)    |
| $\sum_{j\in S} s_j = \sum_{i\in B} b_i$                                               |                      | (29)    |
| $0 \leq b_i \leq bq_i$                                                                | $i \in B$            | (28)    |
| $0 \leq s_j \leq sq_j$                                                                | $j\in S$             | (27)    |
| min $\pi \sum_{i \in B} b_i - \pi^r d^r$                                              |                      | (26)    |
|                                                                                       |                      |         |

## Important note: economic equilibrium of the system

- Objective (26) can be linearised via (18)
- Same linearization trick: (40) gives  $\pi b_i = (bp_i \mu_i)b_i$ , (37) gives  $\mu_i bq_i = \mu_i b_i \implies \pi b_i = bp_i b_i - \mu_i bq_i$
- Of course, same for selling bids (both in  $S^r$  and in  $S^g$ )
- Thus (linear) economic equilibrium constraint (34) ensures buyers are paying no less than sellers are getting (enough money around)
- Difference can be positive, have to be given back to buyers as a discount on their bills  $\implies$  actual energy price < clearing price  $\pi^*$
- Weird: some *i* ∈ *B* not accepted even if the actual energy price < *bp<sub>i</sub>*, to be well thought-of from the regulatory viewpoint (if ever ...)

## Case of elastic demand and (DC) network constraints

$$\min \pi \sum_{i \in B} b_i - \pi^r d^r$$
(26)  
(27), (30), (28), (29), (31), (35), (36), (37), (40)   
(42)

$$m_{l} \leq \sum_{k \in \mathcal{K}} S_{l}^{k} \left( \sum_{i \in I(k)} b_{i} - \sum_{j \in J(k)} s_{j} \right) \leq M_{l} \qquad l \in \mathcal{L}$$
(43)

$$\pi^{k} = \pi + \sum_{I \in \mathcal{L}} S_{I}^{k} (\lambda_{I}^{+} - \lambda_{I}^{-}) \qquad \qquad k \in \mathcal{K}$$
 (44)

$$\eta_j + \pi^r - \pi^{k(j)} \ge -sp_j \quad , \quad \eta_j \ge 0 \qquad \qquad j \in S^r \quad (45)$$

$$\eta_j - \pi^{k(j)} \ge -sp_j$$
,  $\eta_j \ge 0$   $j \in S^g$  (46)

$$\sum_{i \in B} (bp_i b_i - \mu_i bq_i) - \sum_{j \in S} (\eta_j sq_j + sp_j s_j) \ge \sum_{l \in \mathcal{L}} (M_l \lambda_l^+ - m_l \lambda_l^-)$$
(47)

$$(\eta_j + \pi^r - \pi^{k(j)} + sp_j)s_j = 0$$
  $j \in S^r$  (48)

$$(\eta_j - \pi^{k(j)} + sp_j)s_j = 0$$
  $j \in S^g$  (49)

$$\lambda_I^- \big( \sum_{k \in \mathcal{K}} S_I^k \big( \sum_{i \in I(k)} b_i - \sum_{j \in J(k)} s_j \big) - m_I \big) = 0 \qquad I \in \mathcal{L} \quad (50)$$

$$\lambda_{I}^{+}\left(M_{I}-\sum_{k\in\mathcal{K}}S_{I}^{k}\left(\sum_{i\in I(k)}b_{i}-\sum_{j\in J(k)}s_{j}\right)\right)=0 \qquad I\in\mathcal{L} \quad (51)$$

$$\lambda_l^+ \ge 0 , \ \lambda_l^- \ge 0 \qquad \qquad l \in \mathcal{L}$$
 (52)

# Adding the Italian Prezzo Unico Nazionale (PUN)



# Adding the Italian Prezzo Unico Nazionale (PUN intended)

• No, you don't really want to see it, just boring (check the paper)

# Adding the Italian Prezzo Unico Nazionale (PUN intended)

- No, you don't really want to see it, just boring (check the paper)
- Take away: if you can do it with PaC, you can do it with SPaC
- MPCC is "lingua franca" of market models, SPaC very natural in MPCC: just add the bound constraint on S<sup>r</sup> and the corresponding dual variable
- A few not-entirely-trivial issues (economic equilibrium), but very doable
- Almost obvious multiple segmentation of seller market: just add multiple copies of the constraint and of the dual variable
- Multiple segmentation of buyer market possible too in the same way (could it ever make sense? who knows?)
- All in all a simple yet flexible modification of PaC, but MPCC = hard: how about solving it?

# The algorithmic aspects

- MPCC in general  $\mathcal{NP}$ -hard, market clearing has to be "quick"
- Routinely done already in practice: Italian PUN, complex offers, ...
- SPaC not fundamentally more difficult than most practical EU markets, MIP-ing complementarity OK because variables nicely bounded
- Besides, when  $d^r$  is fixed it  $\approx$  boils down to the original clearing problem (an LP if that was,  $\approx$  whatever is currently being solved otherwise)
- Trivial approach: (cleverly) finitely sample *d*<sup>*r*</sup>, return best solution found embarrassingly parallel (MOs can surely buy some large enough server)
- Possibly Benders' style approach (but subproblem may not be convex)
- Typical problem our community loves to deal with, I'd be rather optimistic we can crack it if the interest is there
- But is the interest there? Will it ever be used?

#### 1 A brief introduction to Pay-as-Clear (energy) markets

#### 2 The Problem

- 3 Discussing the problem
- Our solution, in details
- 5 Can it work?
- 6 Can it be applied to practical markets?

#### 7 Conclusions



• Discussed in high-level ministerial meetings in Italy (Fabrizio was there, and it was not his idea)

- Discussed in high-level ministerial meetings in Italy (Fabrizio was there, and it was not his idea)
- I proposed it when the European Community asked suggestions for the highly necessary and urgent energy market reform

- Discussed in high-level ministerial meetings in Italy (Fabrizio was there, and it was not his idea)
- I proposed it when the European Community asked suggestions for the highly necessary and urgent energy market reform

# ABSOLUTELY NO-ONE GAVE A DAMN

- Discussed in high-level ministerial meetings in Italy (Fabrizio was there, and it was not his idea)
- I proposed it when the European Community asked suggestions for the highly necessary and urgent energy market reform

# ABSOLUTELY NO-ONE GAVE A DAMN

- Simpler approaches used in practice (the Spanish way: the State pays)
- Reform based on mandatory difference contracts (not a real reform at all)
- Completely untested mechanics dreamed off by two obscure eggheads
- Maybe completely wrong to start with (economists & their pitchforks): should different producers of the same fungible good be paid differently?

- Discussed in high-level ministerial meetings in Italy (Fabrizio was there, and it was not his idea)
- I proposed it when the European Community asked suggestions for the highly necessary and urgent energy market reform

# ABSOLUTELY NO-ONE GAVE A DAMN

- Simpler approaches used in practice (the Spanish way: the State pays)
- Reform based on mandatory difference contracts (not a real reform at all)
- Completely untested mechanics dreamed off by two obscure eggheads
- Maybe completely wrong to start with (economists & their pitchforks): should different producers of the same fungible good be paid differently?
- My humble take: in a real market probably not, but the energy market is not a real market, so why not?
- Maybe I'm completely wrong (only a humble optimizer), time will tell
Frangioni, Lacalandra (DI – UniPi, ARERA)

• Not sure, maybe nothing at all

#### What's next?

- Not sure, maybe nothing at all
- May very well be the wrong approach
- May very well be the right approach and it won't be used anyway
- Pity because the general idea looks nice and easily applicable
- Anyway, we enjoyed a lot the ride: it's not often you get to step upon the tail of a 50-years old tiger
- Somebody did pick it up and applied it to Brazil (but she's a friend)
- Somebody could get quite a lot of good algorithmic fun with it

#### What's next?

- Not sure, maybe nothing at all
- May very well be the wrong approach
- May very well be the right approach and it won't be used anyway
- Pity because the general idea looks nice and easily applicable
- Anyway, we enjoyed a lot the ride: it's not often you get to step upon the tail of a 50-years old tiger
- Somebody did pick it up and applied it to Brazil (but she's a friend)
- Somebody could get quite a lot of good algorithmic fun with it

### That's all, Folks!

#### What's next?

- Not sure, maybe nothing at all
- May very well be the wrong approach
- May very well be the right approach and it won't be used anyway
- Pity because the general idea looks nice and easily applicable
- Anyway, we enjoyed a lot the ride: it's not often you get to step upon the tail of a 50-years old tiger
- Somebody did pick it up and applied it to Brazil (but she's a friend)
- Somebody could get quite a lot of good algorithmic fun with it

## That's all, Folks! (for now?)



# Funded by the European Union

This study received funding from the European Union – Next-GenerationEU – National Recovery and Resilience Plan (NRRP) — Mission 4, Component 2, and in particular:

- Investment n. 1.1, call PRIN 2022 D.D. 104 02-02-2022, project title "Large-scale optimization for sustainable and resilient energy systems", CUP I53D23002310006;
- Investment 1.3, call for tender No. 1561 of 11.10.2022, project code PE0000021, concession decree n. 1561 of 11.10.2022 adopted by Ministero dell'Università e della Ricerca, CUP I53C22001450006, project title "Network 4 Energy Sustainable Transition — NEST", Task 8.4.4.