Polynomial Optimization Applied to Power Network Operations

Bissan Ghaddar

Ivey Business School Western University

The Hexagon Project Workshop on Power Grids

WESTERN UNIVERSITY · CANADA

Bissan Ghaddar

PO Applied to Power Network Operations

June 18, 2024

1/35

A polynomial program has the following form:

```
[PO-P] min f(x)
s.t. g_i(x) \ge 0  i = \{1, ..., m\}
```

In general, solving a polynomial program is \mathcal{NP} -hard.

- Relaxations for PO using sums-of-squares decomposition have been shown to be very tight.
 - Sequence of SDP relaxations converging to the optimal.
 - But, computationally expensive to solve in practice.

Research objectives

- Develop new methods for solving general PO.
- Apply these approaches to practical applications.

A polynomial program has the following form:

```
[PO-P] min f(x)
s.t. g_i(x) \ge 0  i = \{1, ..., m\}
```

In general, solving a polynomial program is \mathcal{NP} -hard.

- Relaxations for PO using sums-of-squares decomposition have been shown to be very tight.
 - Sequence of SDP relaxations converging to the optimal.
 - But, computationally expensive to solve in practice.

Research objectives

- Develop new methods for solving general PO.
- Apply these approaches to practical applications.

A General Recipe for Relaxations of PO

(PO-P)
$$z = \min_{x} f(x)$$

s.t. $g_i(x) \ge 0$, $i = 1, ..., m$.

(PO-P) is equivalent to

$$\begin{array}{ll} \textbf{(PO-D)} & \max_{\lambda} & \lambda \\ & \text{s.t.} & f(x) - \lambda \geq 0 \ \forall x \in S \end{array}$$

where

A General Recipe for Relaxations of PO

(PO-P)
$$z = \min_{x} f(x)$$

s.t. $g_i(x) \ge 0$, $i = 1, ..., m$.

(PO-P) is equivalent to

$$\begin{array}{ll} \textbf{(PO-D)} & \max_{\lambda} & \lambda \\ & \text{s.t.} & f(x) - \lambda \in \mathcal{P}_d(S) \end{array}$$

where

$$S:=\{x:g_i(x)\geq 0,\ \forall i=1,\cdots,m\},$$

 $\mathcal{P}_d(S) := \{ p(x) \in \mathbf{R}_d[x] : p(x) \ge 0 \ \forall x \in S \},\$ is the cone of polynomials of degree at most d that are non-negative over S.

The condition $f(x) - \lambda \in \mathcal{P}_d(S)$ is \mathcal{NP} -hard in general.

We relax it to $f(x) - \lambda \in \mathcal{M}$ for a suitable $\mathcal{M} \subseteq \mathcal{P}_d(S)$.

$$egin{array}{ccc} [\mathsf{PO-}\mathcal{M}] & \mathsf{max} & \lambda \ & \mathsf{s.t.} & f(x) - \lambda \in \mathcal{M} \end{array}$$

provides a lower bound for the original problem.

 \bullet The choice of ${\mathcal M}$ is a key factor in obtaining good bounds on the problem.

The condition $f(x) - \lambda \in \mathcal{P}_d(S)$ is \mathcal{NP} -hard in general.

We relax it to $f(x) - \lambda \in \mathcal{M}$ for a suitable $\mathcal{M} \subseteq \mathcal{P}_d(S)$.

$$\begin{array}{ll} [\mathsf{PO}\text{-}\mathcal{M}] & \max & \lambda \\ & \mathsf{s.t.} & f(x) - \lambda \in \mathcal{M} \end{array} \end{array}$$

provides a lower bound for the original problem.

• The choice of \mathcal{M} is a key factor in obtaining good bounds on the problem.

Sum-of-square Relaxations for PO

[Lasserre 2001, Parillo 2000] For each r > 0, define the relaxation,

$$\begin{bmatrix} SOS_r \end{bmatrix} z_r^{sos} = \max_{\lambda} \quad \lambda \\ s.t. \quad f(x) - \lambda \in \mathcal{K}_r \end{bmatrix}$$

provides a lower bound on the original problem where

$$\mathcal{K}_r = SOS_r + \sum_{i=1}^m SOS_{r-\deg(g_i)}g_i(x).$$

• For each r, $[SOS_r]$ is an SDP program

• As $r \to \infty$, z_r^{sos} converges to global optimum of the original problem.

• As *r* increases, computational complexity increases rapidly, which makes it impossible to solve large-scale problem in practice.

"Classical" approach:

Use results from algebraic geometry representation to produce hierarchies of approximations converging to the original problem.

Proposed Approach:

- Reduce the problem degree
- Exploit the sparsity characteristics
 - real-world energy networks are represented by sparse graphs where the degree of most nodes in the networks is small
- Develop cheaper relaxations

"Classical" approach:

Use results from algebraic geometry representation to produce hierarchies of approximations converging to the original problem.

Proposed Approach:

- Reduce the problem degree
- Exploit the sparsity characteristics
 - real-world energy networks are represented by sparse graphs where the degree of most nodes in the networks is small
- Develop cheaper relaxations

Sparse Relaxations of PO

Polynomial Optimization Problem

[PO-P]
$$z = \min_x f(x)$$

s.t. $g_i(x) \ge 0, i = 1, ..., m.$

Hierarchy of sparse SDP Relaxations for POP

• [Waki et al. 2006] For each r > 0, define the relaxation,

$$\begin{bmatrix} SPSOS_r \end{bmatrix} z_r^{spsos} = \max_{\lambda, s_{i,k}} & \lambda \\ s.t. & f(x) - \lambda = \sum_k \left(s_{0,k}(x) + \sum_i s_{i,k}(x) g_i(x) \right) \\ & s_{i,k}(x) \text{ is sos supported on } C_k \end{bmatrix}$$

where C_k is the set of maximal cliques of a chordal extension of the correlative sparsity pattern graph

• as r grows, $z_r^{spsos} \rightarrow z$.

Reduction in size

• SDP matrices with size $\binom{|C_k|+r}{r}$ (much smaller than $[SOS_r]$ if $|C_k| \ll n$).

Sparse Relaxations of PO

Polynomial Optimization Problem

[PO-P]
$$z = \min_{x} f(x)$$

s.t. $g_i(x) \ge 0, \quad i = 1, ..., m.$

Hierarchy of sparse SDP Relaxations for POP

• [Waki et al. 2006] For each r > 0, define the relaxation,

$$\begin{bmatrix} SPSOS_r \end{bmatrix} z_r^{spsos} = \max_{\lambda, s_{i,k}} & \lambda \\ \text{s.t.} & f(x) - \lambda = \sum_k \left(s_{0,k}(x) + \sum_i s_{i,k}(x) g_i(x) \right) \\ & s_{i,k}(x) \text{ is sos supported on } C_k$$

where C_k is the set of maximal cliques of a chordal extension of the correlative sparsity pattern graph

• as r grows,
$$z_r^{spsos} \rightarrow z$$

Reduction in size• SDP matrices with size $\binom{|C_k|+r}{r}$ (much smaller than $[SOS_r]$ if $|C_k| \ll n$).Bissan GhaddarPO Applied to Power Network OperationsJune 18, 20247/35

Sparse Relaxations of PO

Polynomial Optimization Problem

[PO-P]
$$z = \min_{x} f(x)$$

s.t. $g_i(x) \ge 0, \quad i = 1, ..., m.$

Hierarchy of sparse SDP Relaxations for POP

• [Waki et al. 2006] For each r > 0, define the relaxation,

$$\begin{bmatrix} SPSOS_r \end{bmatrix} z_r^{spsos} = \max_{\lambda, s_{i,k}} & \lambda \\ \text{s.t.} & f(x) - \lambda = \sum_k \left(s_{0,k}(x) + \sum_i s_{i,k}(x) g_i(x) \right) \\ & s_{i,k}(x) \text{ is sos supported on } C_k$$

where C_k is the set of maximal cliques of a chordal extension of the correlative sparsity pattern graph

• as r grows,
$$z_r^{spsos} \rightarrow z$$
.

Reduction in size

• SDP matrices with size $\binom{|C_k|+r}{r}$ (much smaller than $[SOS_r]$ if $|C_k| \ll n$).

SOCP-based Hierarchy for PO

For each r > 0, define the relaxation,

$$\begin{bmatrix} \mathsf{SDD}_r \end{bmatrix} z_r^{sdd} = \max_{\lambda} \quad \lambda \\ \text{s.t.} \quad f(x) - \lambda \in \mathcal{S}_r$$

provides a lower bound on the original problem where

$$S_r = SDSOS_r + \sum_{i=1}^m SDSOS_{r-\deg(g_i)}g_i(x)$$

• For each r, $[SDD_r]$ is a second-order cone program.

Reduction in computational time

• computationally easier to solve

• replacing SOS polynomials with SDSOS polynomials does not guarantee convergence

Bissan Ghaddar

PO Applied to Power Network Operations

June 18, 2024

SOCP-based Hierarchy for PO

For each r > 0, define the relaxation,

$$\begin{bmatrix} \mathsf{SDD}_r \end{bmatrix} z_r^{sdd} = \max_{\lambda} \quad \lambda \\ \text{s.t.} \quad f(x) - \lambda \in \mathcal{S}_r$$

provides a lower bound on the original problem where

$$S_r = SDSOS_r + \sum_{i=1}^m SDSOS_{r-\deg(g_i)}g_i(x)$$

• For each r, $[SDD_r]$ is a second-order cone program.

Reduction in computational time

- computationally easier to solve
- replacing SOS polynomials with SDSOS polynomials does not guarantee convergence

Bissan Ghaddar

PO Applied to Power Network Operations

June 18, 2024

Motivation

- In many real-world decision problems, combined challenge of
 - Nonconvex models and dynamics, e.g. energy conservation laws (friction induced headloss, AC power flow).
 - Nonconvex objective functions, e.g. energy costs, risk-averse optimization.
 - Combinations of discrete and continuous decisions, e.g. valve placement, unit commitment, dispatch.
 - Uncertainty in problem parameters, e.g. demands, prices, supply.
- However, we do have
 - Constraints and decision variables are highly structured, e.g. sparsity of traffic, energy or water networks.
 - Samples of realizations for uncertain system parameters; e.g. collected iteratively by sensors and meters
- Optimal decision for these hard, nonconvex real-world problems is in high demand!

Proposed Solution Methods

Decision optimization problem

Mathematical optimization model

Structured Polynomial Optimization Problem

- Add valid inequalities to strengthen convexification.
- Exploit sparsity.
- Efficient algorithms for solving SDPs.
- POP under uncertainty.

Conic relaxations for POP

- Develop new approximation hierarchies.
- Exploit structure in the new conic relaxations.

Energy Networks

PO Applied to Power Network Operations

June 18, 2024

Image: A marked and A marked

DQC

æ

< ∃ >

Application - AC Optimal Power Flow

Economic dispatch of power generation is a critical problem for utility companies,

Production Cost [O'Neill et al 2012]:

519\$bn Worldwide 112\$bn USA

Goal: Determine the optimal operating point of an electric power generation system.

Challenges:

- non-convex due to the non-linear power flow equations
- lack of global solver for generic power systems

Approach:

- SDP provide strong bounds for ACOPF [Lavaei & Low 2010]
- Research on polynomial optimization approach.

Benefits:

• Even 1% improvement in dispatch would result in 1-5\$bn savings for US (4-20\$bn worldwide) [O'Neill et al. 2012]

June 18, 2024

Challenges - AC Optimal Power Flow

Optimization over power systems:

- Large-scale power transmission and distribution networks.
- AC power flow.
- Integration of distributed, uncertain renewable supply.
- Handling discrete decisions.

ACOPF: Parameters

Sets

N: set of buses	G: set of generators
E: set of branches	L: set of branches with apparent power flow lim

Bus Parameters

P_k^{\min}, P_k^{\max} :	limits on active generation capacity at bus k .
Q_k^{\min} , Q_k^{\max} :	limits on reactive generation capacity at bus k .
P_k^d , Q_k^d :	active and reactive load (demand) at each bus k .
V_k^{\min} , V_k^{\max} :	limits on the absolute value of the voltage at a given bus k .
$y \in \mathbb{R}^{ N \times N }$:	network admittance matrix.

Branch Parameters

S_{lm}^{\max} :	limit on the absolute value of the apparent power of a branch (I, m) .
\bar{b}_{lm} :	total shunt susceptance.
$g_{lm} + ib_{lm}$:	the series admittance of the line.

June 18, 2024

イロト イボト イヨト イヨト

æ

ACOPF: Parameters

Lavaei and Low notation:

$$\begin{split} y_{k} &= e_{k}e_{k}^{T}y, \\ y_{lm} &= (j\frac{\bar{b}_{lm}}{2} + g_{lm} + jb_{lm})e_{l}e_{l}^{T} - (g_{lm} + jb_{lm})e_{l}e_{m}^{T}, \\ Y_{k} &= \frac{1}{2} \begin{bmatrix} \Re(y_{k} + y_{k}^{T}) & \Im(y_{k}^{T} - y_{k}) \\ \Im(y_{k} - y_{k}^{T}) & \Re(y_{k} + y_{k}^{T}) \end{bmatrix}, \\ \bar{Y}_{k} &= -\frac{1}{2} \begin{bmatrix} \Im(y_{k} + y_{k}^{T}) & \Re(y_{k} - y_{k}^{T}) \\ \Re(y_{k}^{T} - y_{k}) & \Im(y_{k} + y_{k}^{T}) \end{bmatrix}, \\ M_{k} &= \begin{bmatrix} e_{k}e_{k}^{T} & 0 \\ 0 & e_{k}e_{k}^{T} \end{bmatrix}, \\ Y_{lm} &= \frac{1}{2} \begin{bmatrix} \Re(y_{lm} + y_{lm}^{T}) & \Im(y_{lm}^{T} - y_{lm}) \\ \Im(y_{lm} - y_{lm}^{T}) & \Re(y_{lm} + y_{lm}^{T}) \end{bmatrix} \\ \bar{Y}_{lm} &= -\frac{1}{2} \begin{bmatrix} \Im(y_{lm} + y_{lm}^{T}) & \Re(y_{lm}^{T} - y_{lm}) \\ \Re(y_{lm}^{T} - y_{lm}) & \Im(y_{lm} + y_{lm}^{T}) \end{bmatrix} \end{split}$$

Bissan Ghaddar

æ

▶ < ∃ ▶</p>

[OPF-D4] min Power Generation Cost s.t. Active Power Constraint Reactive Power Constraint Voltage Constraint Apparent Power Flow Constraint

э

[OPF-D4] min $\sum_{k \in G} \left(c_k^2 (P_k^d + \operatorname{tr}(Y_k x x^T))^2 + c_k^1 (P_k^d + \operatorname{tr}(Y_k x x^T)) + c_k^0 \right)$

s.t. Active Power Constraint

Reactive Power Constraint

Voltage Constraint

Apparent Power Flow Constraint

[OPF-D4] min
$$\sum_{k \in G} (c_k^2 (P_k^d + \operatorname{tr}(Y_k x x^T))^2 + c_k^1 (P_k^d + \operatorname{tr}(Y_k x x^T)) + c_k^0)$$

s.t.
$$P_k^{\min} \leq \operatorname{tr}(Y_k x x^T) + P_k^d \leq P_k^{\max}$$

Reactive Power Constraint

Voltage Constraint

Apparent Power Flow Constraint

э

[OPF-D4] min
$$\sum_{k \in G} (c_k^2 (P_k^d + \operatorname{tr}(Y_k x x^T))^2 + c_k^1 (P_k^d + \operatorname{tr}(Y_k x x^T)) + c_k^0)$$

s.t.
$$P_k^{\min} \leq \operatorname{tr}(Y_k x x^T) + P_k^d \leq P_k^{\max}$$

 $Q_k^{\min} \leq \operatorname{tr}(\bar{Y}_k x x^T) + Q_k^d \leq Q_k^{\max}$

Voltage Constraint

Apparent Power Flow Constraint

글 > 글

[OPF-D4] min
$$\sum_{k \in G} \left(c_k^2 (P_k^d + \operatorname{tr}(Y_k x x^T))^2 + c_k^1 (P_k^d + \operatorname{tr}(Y_k x x^T)) + c_k^0 \right)$$

s.t.
$$P_k^{\min} \leq \operatorname{tr}(Y_k x x^T) + P_k^d \leq P_k^{\max}$$

$$egin{aligned} Q_k^{\min} &\leq \operatorname{tr}(ar{Y}_k x x^{\mathcal{T}}) + Q_k^d \leq Q_k^{\max} \ (V_k^{\min})^2 &\leq \operatorname{tr}(M_k x x^{\mathcal{T}}) \leq (V_k^{\max})^2 \end{aligned}$$

Apparent Power Flow Constraint

3

$$\begin{bmatrix} \text{OPF-D4} \end{bmatrix} \min \sum_{k \in G} \left(c_k^2 (P_k^d + \text{tr}(Y_k x x^T))^2 + c_k^1 (P_k^d + \text{tr}(Y_k x x^T)) + c_k^0 \right)$$

s.t. $P_k^{\min} \leq \text{tr}(Y_k x x^T) + P_k^d \leq P_k^{\max}$
 $Q_k^{\min} \leq \text{tr}(\bar{Y}_k x x^T) + Q_k^d \leq Q_k^{\max}$
 $(V_k^{\min})^2 \leq \text{tr}(M_k x x^T) \leq (V_k^{\max})^2$
 $(\text{tr}(Y_{lm} x x^T))^2 + (\text{tr}(\bar{Y}_{lm} x x^T))^2 \leq (S_{lm}^{\max})^2$

æ

► < Ξ ►</p>

ACOPF: Formulation

Decision Variables: $x := [\Re V_k \quad \Im V_k]^T$.

$$\begin{bmatrix} \mathsf{OPF}\text{-}\mathsf{D4} \end{bmatrix} \min \sum_{k \in G} \left(c_k^2 (P_k^d + \operatorname{tr}(Y_k x x^T))^2 + c_k^1 (P_k^d + \operatorname{tr}(Y_k x x^T)) + c_k^0 \right)$$

s.t. $P_k^{\min} \leq \operatorname{tr}(Y_k x x^T) + P_k^d \leq P_k^{\max}$
 $Q_k^{\min} \leq \operatorname{tr}(\bar{Y}_k x x^T) + Q_k^d \leq Q_k^{\max}$
 $(V_k^{\min})^2 \leq \operatorname{tr}(M_k x x^T) \leq (V_k^{\max})^2$
 $(\operatorname{tr}(Y_{lm} x x^T))^2 + (\operatorname{tr}(\bar{Y}_{lm} x x^T))^2 \leq (S_{lm}^{\max})^2$

Optimal Power Flow is a polynomial optimization problem of degree 4, hard to solve to optimality even for small instances [Molzahn and Hiskens 2013][Josz et al. 2013].

ACOPF: Quadratic PO

$$\begin{bmatrix} \text{OPF-Q} \end{bmatrix} \min \sum_{k \in G} \left(c_k^2 (P_k^g)^2 + c_k^1 (P_k^d + \text{tr}(Y_k x x^T)) + c_k^0 \right) \\ P_k^{\min} \leq \text{tr}(Y_k x x^T) + P_k^d \leq P_k^{\max} \\ Q_k^{\min} \leq \text{tr}(\bar{Y}_k x x^T) + Q_k^d \leq Q_k^{\max} \\ (V_k^{\min})^2 \leq \text{tr}(M_k x x^T) \leq (V_k^{\max})^2 \\ P_{lm}^2 + Q_{lm}^2 \leq (S_{lm}^{\max})^2 \\ P_k^g = \text{tr}(Y_k x x^T) + P_k^d \\ P_{lm} = \text{tr}(\bar{Y}_{lm} x x^T) \\ Q_{lm} = \text{tr}(\bar{Y}_{lm} x x^T) \end{aligned}$$

[OPF-Q] has |G| + 2|L| additional variables which can be relatively small as $|G| \ll |N|$ and $|L| \ll |E|$.

3

Using duality, the following results hold for the ACOPF problem:

- The first level of the [SOS_r] hierarchy of [OPF-Q] is the conic dual of Optimization 3 Proposed by Lavaei and Low, 2010.
- The first level of the [SDD_r] hierarchy of [OPF-Q] is the conic dual of Problem R₂ Proposed by Low 2013.

- Sparsity of admittance matrix can be exploited. [Stott 1974].
- Exploit sparsity in SDP relaxation for OPF [Molzahn et al. 2013].
- SparseCoLO package [Fujisawa et al. 2010], [Kim et al. 2010].

Sparsity of the SDP relaxation: 39 Buses

	n	nnz(A)	sum(SDP_size)	max(SDP_size)	#SDP Blocks	CPU_t	_
SDP	7114	5992	6880	78	95	6.4	-
S-SDP	2526	6192	2292	18	103	0.3	
				. €		ê≻ ≣	୬୯୯
Bissan	Ghaddar		PO Applied to Power I	Network Operations	June 18, 202	24	20 / 35

OPF - Results

			Gap (%)			Rı	untime (seco	onds)
Test Case	<i>N</i>	<i>E</i>	[SDD ₂]	[SOS ₂]	[SPSOS ₂]	[SDD ₂]	[SOS ₂]	[SPSOS ₂]
case3_lmbd	3	3	1.32	0.39	0.39	<1	<1	<1
case5_pjm	5	6	14.55	5.22	5.22	<1	< 1	<1
case14_ieee	14	20	0.11	0	0	<1	< 1	<1
case24_ieee_rts	24	38	0.02	0	0	<1	< 1	<1
case30_as	30	41	0.06	0	0	<1	2	<1
case30_fsr	30	41	0.39	0	0	<1	2	<1
case30_ieee	30	41	10.81	0.01	0.01	<1	2	<1
case39_epri	39	46	0.49	0.01	0.01	<1	6	<1
case57_ieee	57	80	0.46	0.01	0	<1	20	<1
case73_ieee_rts	73	120	0.04	0	0	<1	60	<1
case89_pegase	89	210	0.75	0.01	0.01	<1	160	<1
case118_ieee	118	186	2.27	0.18	0.18	<1	608	<1
case162_ieee_dtc	162	284	7.68	n.d.	2.26	<1	n.d.	3
case179_goc	179	263	0.13	n.d.	0.06	<1	n.d.	< 1
case200_tamu	200	245	0.01	n.d.	0	<1	n.d.	< 1
case240_pserc	240	448	3.92	n.d.	2.28	<1	n.d.	2
case300_ieee	300	411	2.6	n.d.	0.11	<1	n.d.	2
case500_tamu	500	597	5.39	n.d.	2.11	<1	n.d.	2
case588_sdet	588	686	2.10	n.d.	0.67	<1	n.d.	3
case1354_pegase	1354	1991	2.44	n.d.	0.56	3	n.d.	7
case1888_rte	1888	2531	2.06	n.d.	1.75	4	n.d.	11
case1951_rte	1951	2596	0.50	n.d.	0.02	5	n.d.	11
case2000_tamu	2000	3206	0.21	n.d.	-	3	n.d.	119
case2316_sdet	2316	3017	2.30	n.d.	0.73	9	n.d.	141
case2383wp_k	2383	2896	1.21	n.d.	0.38	4	n.d.	80
case2736sp_k	2736	3504	2.35	n.d.	0.01	4	n.d.	75
case2737sop_k	2737	3506	11.13	n.d.	0.02	2	n.d.	69
case2746wop_k	2746	3514	2.01	n.d.	0.01	4	n.d.	91
case2746wp_k	2746	3514	18.24	n.d.	0.01	3	n.d.	90
						Image: 1 million of the second sec	► < Ξ ►	(B)

Bissan Ghaddar

June 18, 2024

OPF - Results

			Gap (%)			RL	intime (seco	onds)
Test Case	<i>N</i>	<i>E</i>	[SDD ₂]	[SOS ₂]	[SPSOS ₂]	[SDD ₂]	[SOS ₂]	[SPSOS ₂]
case2848_rte	2848	3776	0.41	n.d.	0.05	6	n.d.	21
case2853_sdet	2853	3921	3.09	n.d.	0.55	8	n.d.	61
case2868_rte	2868	3808	0.55	n.d.	0.21	7	n.d.	19
case2869_pegase	2869	4582	1.08	n.d.	0.42	9	n.d.	26
case3012wp_k	3012	3572	15.28	n.d.	0.17	4	n.d.	127
case3120sp_k	3120	3693	15.61	n.d.	0.14	4	n.d.	139
case3375wp_k	3375	4161	1.60	n.d.	n.d.	5	n.d.	n.d.
case4661_sdet	4661	5997	10.24	n.d.	n.d.	21	n.d.	n.d.
case6468_rte	6468	9000	2.56	n.d.	0.47	18	n.d.	174
case6470_rte	6470	9005	3.88	n.d.	0.47	23	n.d.	210
case6495_rte	6495	9019	18.07	n.d.	14.76	25	n.d.	232
case6515_rte	6515	9037	8.52	n.d.	6.46	24	n.d.	214
case9241_pegase	9241	16049	2.94	n.d.	2.18	65	n.d.	524
case10000_tamu	10000	12706	0.82	n.d.	0.39	21	n.d.	1009
case13659_pegase	13659	20467	1.66	n.d.	n.d.	74	n.d.	n.d.

Paper: Optimal Power Flow as a Polynomial Optimization Problem, IEEE Transactions on Power Systems.

Paper: Alternative LP and SOCP Hierarchies for ACOPF problems, IEEE Transactions on Power Systems.

< 日 > < 同 > < 三 > < 三 >

э

Current Work

< ∃ →

æ

Uncertainty

- develop methodologies to handle uncertainty
- apply to practical problems (ACOPF with uncertain demand)

Conic relaxations

- combine SOCP and SDP relaxations
- apply to MIQCQP (multiperiod ACOPF with binary variables)

э

ACOPF with uncertainty

- Demand uncertainty and renewable energy penetration
- Adjustable Robust QCQP with ellipsoidal uncertainty

Paper: Adjustable Robust Two-Stage Polynomial Optimization with Application to AC Optimal Power Flow, SIAM Journal on Optimization, 2023.

$$\begin{array}{ll} [QP]: & \min_{y,x} & y^{\mathrm{T}}Py + p^{\mathrm{T}}y + p_0 \quad (\texttt{convex}) \\ & \text{s.t.} & Ay \leq b \quad (\texttt{convex}) \\ & & x^{\mathrm{T}}Q_ix + q_i = y_i \quad \texttt{for all } i \in \{1, \dots, m_{eq}\} \quad (\texttt{non-convex}) \\ & & x^{\mathrm{T}}Q_jx + q_j \geq 0 \quad \texttt{for all } j \in \{1, \dots, m_{in}\} \quad (\texttt{non-convex}) \end{array}$$

- y are control variables (e.g., active power on PV buses)
- x are state variables (voltages in rectangular form)

Adjustable Robust ACOPF

- Consider uncertainty in power demands or generation
- Ellipsoidal uncertainty set: $\Omega = \{\zeta \in \mathbb{R}^{n_{\zeta}} : \zeta^{\mathrm{T}} \Sigma \zeta \leq 1\}$

$$\begin{split} [ARQP]: \min_{y} \quad y^{\mathrm{T}} P y + p^{\mathrm{T}} y + p_{0} \\ \text{s.t.} \quad Ay \leq b \\ \text{and for any } \zeta \in \Omega \text{ there is } x \text{ such that:} \\ x^{\mathrm{T}} Q_{i} x + m_{i}^{\mathrm{T}} \zeta + q_{i} = y_{i} \text{ for all } i \in \{1, \dots, m_{eq}\} \\ x^{\mathrm{T}} Q_{j} x + m_{j}^{\mathrm{T}} \zeta + q_{j} \geq 0 \text{ for all } j \in \{1, \dots, m_{in}\} \end{split}$$

• How to approach "robust" equalities?

Adjustable Robust ACOPF

- Consider uncertainty in power demands or generation
- Ellipsoidal uncertainty set: $\Omega = \{\zeta \in \mathbb{R}^{n_{\zeta}} : \zeta^{\mathrm{T}} \Sigma \zeta \leq 1\}$

$$\begin{split} [ARQP]: \min_{y} \quad y^{\mathrm{T}} P y + p^{\mathrm{T}} y + p_{0} \\ \text{s.t.} \quad Ay \leq b \\ \text{and for any } \zeta \in \Omega \text{ there is } x \text{ such that:} \\ x^{\mathrm{T}} Q_{i} x + m_{i}^{\mathrm{T}} \zeta + q_{i} = y_{i} \text{ for all } i \in \{1, \dots, m_{eq}\} \\ x^{\mathrm{T}} Q_{j} x + m_{j}^{\mathrm{T}} \zeta + q_{j} \geq 0 \quad \text{for all } j \in \{1, \dots, m_{in}\} \end{split}$$

• How to approach "robust" equalities?

Eliminate x, obtain a robust problem in y

$$\begin{split} \min_{y} \quad y^{\mathrm{T}} P y + p^{\mathrm{T}} y + p_{0} \\ \text{s.t.} \quad A y \leq b \\ \text{and for any } \zeta \in \Omega \text{ there is } x \text{ such that:} \\ D_{1} \zeta + D_{2} y + d = x \\ x^{\mathrm{T}} Q_{j} x + m_{j}^{\mathrm{T}} \zeta + q_{j} \geq 0 \quad \text{for all } j \in \{1, \dots, m_{in}\} \end{split}$$

B → B

$$\begin{split} \min_{y} & y^{\mathrm{T}} P y + p^{\mathrm{T}} y + p_{0} \\ \text{s. t.} & A y \leq b \\ & \text{and for any } \zeta \in \Omega \text{ there is } x \text{ such that:} \\ & D_{1}\zeta + D_{2}y + d = x \\ & x^{\mathrm{T}} Q_{j} x + m_{j}^{\mathrm{T}} \zeta + q_{j} \geq 0 \quad \text{for all } j \in \{1, \dots, m_{in}\} \\ &= \min_{y} & y^{\mathrm{T}} P y + p^{\mathrm{T}} y + p_{0} \\ \text{s. t.} & A y \leq b \\ & \text{and for any } \zeta \in \Omega, \ j \in \{1, \dots, m_{in}\} \\ & (D_{1}\zeta + D_{2}y + d)^{\mathrm{T}} Q_{j} (D_{1}\zeta + D_{2}y + d) + m_{j}^{\mathrm{T}} \zeta + q_{j} \geq 0 \end{split}$$

Image: A matrix and a matrix

æ

∃ →

Affine equalities

Eliminate ζ , obtain an SDP in y

$$= \min_{y} \quad y^{\mathrm{T}} P y + p^{\mathrm{T}} y + p_{0}$$

s.t. $Ay \leq b$
and for all $\zeta^{\mathrm{T}} \Sigma \zeta \leq 1, \ j \in \{1, \dots, m_{in}\}$
 $\zeta^{\mathrm{T}} A_{j} \zeta + (y^{\mathrm{T}} B_{j} + b_{j}^{\mathrm{T}}) \zeta + (y^{\mathrm{T}} C_{j} + c_{j}^{\mathrm{T}}) y + d_{j} \geq 0$

< 47 ▶

< ∃⇒

æ

Affine equalities

$$= \min_{y} y^{\mathrm{T}} P y + p^{\mathrm{T}} y + p_{0}$$

s.t. $Ay \leq b$
and for all $\zeta^{\mathrm{T}} \Sigma \zeta \leq 1, j \in \{1, \dots, m_{in}\}$
 $\zeta^{\mathrm{T}} A_{j} \zeta + (y^{\mathrm{T}} B_{j} + b_{j}^{\mathrm{T}}) \zeta + (y^{\mathrm{T}} C_{j} + c_{j}^{\mathrm{T}}) y + d_{j} \geq 0$
 $\zeta^{\mathrm{T}} A_{j} \zeta + (y^{\mathrm{T}} B_{j} + b_{j}^{\mathrm{T}}) \zeta + (y^{\mathrm{T}} C_{j} + c_{j}^{\mathrm{T}}) y + d_{j} \geq 0$
 $\zeta^{\mathrm{Hemma}} \min_{y,\lambda,\gamma} y^{\mathrm{T}} P y + p^{\mathrm{T}} y + p_{0} \quad (\text{convex, tractable})$
s.t. $Ay \leq b \quad (\text{convex, tractable})$
and for all $j \in \{1, \dots, m_{in}\}$
 $\begin{bmatrix} \gamma_{j} + c_{j}^{\mathrm{T}} y + d_{j} - \lambda_{j}, & \frac{1}{2}(y^{\mathrm{T}} B_{j} + b_{j}^{\mathrm{T}}) \\ \frac{1}{2}(B_{j}^{\mathrm{T}} y + b_{j}), & \lambda_{j}\Sigma + A_{j} \end{bmatrix} \succeq 0 \quad (\text{convex, tractable})$
 $\lambda_{j} \geq 0 \quad (\text{convex, tractable})$
 $y^{\mathrm{T}} C y = \gamma_{j} \quad (\text{non-convex, but doable})$

Ξ.

- Approximate quadratic in x (state var.) functions in each equality by piecewise affine functions in x
- Express x as a function of (y, ζ), eliminate x and equalities
 Result: quadratic *robust* optimization problem in (y, ζ)
- Use S-lemma to eliminate ζ (uncertainty var.)
 Result: SDP in y (control var.) with quadratic equalities
- Solve SDP with quadratic equalities via Alternating Projections Result: robust control var. solution to the piecewise affine approximation of [ARQP]
- Check feasibility of the above control var. solution for [ARQP] Result: certificate of (in)feasibility for [ARQP]

- Approximate quadratic in x (state var.) functions in each equality by piecewise affine functions in x
- Express x as a function of (y, ζ), eliminate x and equalities
 Result: quadratic *robust* optimization problem in (y, ζ)
- Use S-lemma to eliminate ζ (uncertainty var.)
 Result: SDP in y (control var.) with quadratic equalities
- Solve SDP with quadratic equalities via Alternating Projections Result: robust control var. solution to the piecewise affine approximation of [ARQP]
- Check feasibility of the above control var. solution for [ARQP] Result: certificate of (in)feasibility for [ARQP]

- Approximate quadratic in x (state var.) functions in each equality by piecewise affine functions in x
- Express x as a function of (y, ζ), eliminate x and equalities
 Result: quadratic *robust* optimization problem in (y, ζ)
- Use S-lemma to eliminate ζ (uncertainty var.)
 Result: SDP in y (control var.) with quadratic equalities
- Solve SDP with quadratic equalities via Alternating Projections Result: robust control var. solution to the piecewise affine approximation of [ARQP]
- Check feasibility of the above control var. solution for [ARQP] Result: certificate of (in)feasibility for [ARQP]

- Approximate quadratic in x (state var.) functions in each equality by piecewise affine functions in x
- Express x as a function of (y, ζ), eliminate x and equalities
 Result: quadratic *robust* optimization problem in (y, ζ)
- Use S-lemma to eliminate ζ (uncertainty var.)
 Result: SDP in y (control var.) with quadratic equalities
- Solve SDP with quadratic equalities via Alternating Projections Result: robust control var. solution to the piecewise affine approximation of [ARQP]
- Check feasibility of the above control var. solution for [ARQP] Result: certificate of (in)feasibility for [ARQP]

• Partition the feasible set for x into subsets S_1, \ldots, S_J

- Apply "Algorithm to solve [ARQP]" on restrictions of [ARQP] to each subset S_k, k ≤ J. Use affine approximations on S_k:
 - Let \hat{x} be the "center" of S_k
 - Linearize equality constraints using Taylor series:

 $x^{\mathrm{T}}Q_i x \rightarrow \hat{x}^{\mathrm{T}}Q_i \hat{x} + \hat{x}^{\mathrm{T}}Q_i (x - \hat{x})$ for all $i \in \{1, \dots, m_{eq}\}$

- Choose the best robust control var. solution among restrictions
- Basic feasibility check: solve the *nominal* power flow equalities

- Partition the feasible set for x into subsets S_1, \ldots, S_J
- Apply "Algorithm to solve [ARQP]" on restrictions of [ARQP] to each subset S_k, k ≤ J. Use affine approximations on S_k:
 - Let \hat{x} be the "center" of S_k
 - Linearize equality constraints using Taylor series:

 $x^{\mathrm{T}}Q_i x
ightarrow \hat{x}^{\mathrm{T}}Q_i \hat{x} + \hat{x}^{\mathrm{T}}Q_i (x - \hat{x})$ for all $i \in \{1, \dots, m_{eq}\}$

- Choose the best robust control var. solution among restrictions
- Basic feasibility check: solve the *nominal* power flow equalities

- Partition the feasible set for x into subsets S_1, \ldots, S_J
- Apply "Algorithm to solve [ARQP]" on restrictions of [ARQP] to each subset S_k, k ≤ J. Use affine approximations on S_k:
 - Let \hat{x} be the "center" of S_k
 - Linearize equality constraints using Taylor series:

 $x^{\mathrm{T}}Q_i x
ightarrow \hat{x}^{\mathrm{T}}Q_i \hat{x} + \hat{x}^{\mathrm{T}}Q_i (x - \hat{x})$ for all $i \in \{1, \dots, m_{eq}\}$

- Choose the best robust control var. solution among restrictions
- Basic feasibility check: solve the nominal power flow equalities

- Partition the feasible set for x into subsets S_1, \ldots, S_J
- Apply "Algorithm to solve [ARQP]" on restrictions of [ARQP] to each subset S_k, k ≤ J. Use affine approximations on S_k:
 - Let \hat{x} be the "center" of S_k
 - Linearize equality constraints using Taylor series:

 $x^{\mathrm{T}}Q_i x
ightarrow \hat{x}^{\mathrm{T}}Q_i \hat{x} + \hat{x}^{\mathrm{T}}Q_i (x - \hat{x})$ for all $i \in \{1, \dots, m_{eq}\}$

- Choose the best robust control var. solution among restrictions
- Basic feasibility check: solve the nominal power flow equalities

Numerical experiments: instances with up to 9 buses

Uncertainty,	Maria	Average	T	Constraint	Max # violations,	Max # violations,			
% of load	Iviodei	objective	Time, sec.	violations, %	per exper., PQ	per exper., VI			
case 6ww, 6 buses									
	Nominal	31.3	0.0	43.9	0	2			
1	DCOPF	-	-	-	-	-			
T	SDP	31.4	28.4	22.1	0	2			
	Taylor	31.6	69.4	0.0	0	0			
			case	9, 9 buses					
	Nominal	53.0	0.0	0.7	0	2			
1	DCOPF	53.2	9.1	0.0	0	0			
T	SDP	53.0	22.5	100.0	0	2			
	Taylor	53.3	57.6	0.0	0	0			
	Nominal	53.2	0.0	35.7	0	2			
-	DCOPF	53.5	13.8	0.0	0	0			
5	SDP	53.2	30.5	100.0	0	3			
	Taylor	53.4	72.7	0.0	0	0			
	Nominal	53.5	0.0	43.9	0	2			
10	DCOPF	54.4	12.6	0.1	1	0			
10	SDP	53.6	23.8	87.5	0	3			
	Taylor	53.7	70.4	0.0	0	0			
	Nominal	54.9	0.0	48.5	1	5			
20	DCOPF	55.5	12.1	3.4	1	0			
20	SDP	55.0	29.4	99.8	1	6			
	Taylor	55.0	74.4	1.0	1	0			
	Nominal	57.1	0.0	51.3	1	6			
30	DCOPF	-	-	-	-	-			
30	SDP	57.4	26.1	97.8	1	6			
	Taylor	57.2	68.1	7.1	1	2			

Bissan Ghaddar

June 18, 2024

Uncertainty,	Model	Average	Time coc	Constraint	Max # violations,	Max # violations,			
% of load	woder	objective	Time, sec.	violations, %	per exper., PQ	per exper., VI			
case 30, 30 buses									
	Nominal	6.1	0.1	100.0	0	2			
1	DCOPF	-	-	-	-	-			
1	SDP	5.8	178.6	31.7	0	2			
	Taylor	5.9	177.2	1.7	0	2			
	case 57, 57 buses								
	Nominal	417.4	0.1	70.6	2	1			
1	DCOPF	418.5	43.0	100.0	2	1			
	Taylor	426.8	467.2	0.0	0	0			
case 118, 118 buses									
	Nominal	1296.7	0.2	99.5	9	0			
	DCOPF	1315.6	94.9	100.0	21	0			
1	Taylor	1301.3	830.0	1.1	1	0			

э

- Solved large-scale deterministic problems
- Solved small and medium scale problems with uncertainty
 - $\bullet\,$ Finds control solutions in short time for small to middle-sized $M_{\rm ATPOWER}\,$ cases
 - Works best for low to moderate levels of uncertainty
 - Generalizes to adjustable robust polynomial problems
- **Ongoing:** Solve small and medium scale problems with unit commitment and AC constraints
 - combine sparsity and SDP relaxations in a branch and bound framework
 - Find reasonable gap in a short amount of time for small to middle-sized MATPOWER cases
 - Generalize to MIQCQP

- Solved large-scale deterministic problems
- Solved small and medium scale problems with uncertainty
 - $\bullet\,$ Finds control solutions in short time for small to middle-sized $M_{\rm ATPOWER}$ cases
 - Works best for low to moderate levels of uncertainty
 - Generalizes to adjustable robust polynomial problems
- **Ongoing:** Solve small and medium scale problems with unit commitment and AC constraints
 - combine sparsity and SDP relaxations in a branch and bound framework
 - Find reasonable gap in a short amount of time for small to middle-sized MATPOWER cases
 - Generalize to MIQCQP

- Solved large-scale deterministic problems
- Solved small and medium scale problems with uncertainty
 - $\bullet\,$ Finds control solutions in short time for small to middle-sized $M_{\rm ATPOWER}$ cases
 - Works best for low to moderate levels of uncertainty
 - Generalizes to adjustable robust polynomial problems
- **Ongoing:** Solve small and medium scale problems with unit commitment and AC constraints
 - combine sparsity and SDP relaxations in a branch and bound framework
 - Find reasonable gap in a short amount of time for small to middle-sized MATPOWER cases
 - Generalize to MIQCQP

- Solved large-scale deterministic problems
- Solved small and medium scale problems with uncertainty
 - $\bullet\,$ Finds control solutions in short time for small to middle-sized $M_{\rm ATPOWER}$ cases
 - Works best for low to moderate levels of uncertainty
 - Generalizes to adjustable robust polynomial problems
- **Ongoing:** Solve small and medium scale problems with unit commitment and AC constraints
 - combine sparsity and SDP relaxations in a branch and bound framework
 - Find reasonable gap in a short amount of time for small to middle-sized MATPOWER cases
 - Generalize to MIQCQP

Thank you!

< □ > < 同 >

< ∃ →

æ