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Polynomial Programming

A polynomial program has the following form:

[PO-P] min f(x)
st. gi(x)>0 i={1,...,m}

In general, solving a polynomial program is NP-hard.
@ Relaxations for PO using sums-of-squares decomposition have been
shown to be very tight.

e Sequence of SDP relaxations converging to the optimal.
e But, computationally expensive to solve in practice.
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Polynomial Programming

A polynomial program has the following form:

[PO-P] min f(x)
st. gi(x)>0 i={1,...,m}

In general, solving a polynomial program is NP-hard.

@ Relaxations for PO using sums-of-squares decomposition have been
shown to be very tight.

e Sequence of SDP relaxations converging to the optimal.
e But, computationally expensive to solve in practice.

Research objectives
@ Develop new methods for solving general PO.

@ Apply these approaches to practical applications.
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A General Recipe for Relaxations of PO

(PO-P) z = min, f(x)
st. gi(x)>0, i=1,....m.

(PO-P) is equivalent to

(PO-D) max, A
s.t. f(x)—A>0VxeS

Si={x:g(x)=0,Vi=1,--,m} 0
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A General Recipe for Relaxations of PO

(PO-P) z = min, f(x)
st. gi(x)>0, i=1,....m.

(PO-P) is equivalent to

(PO-D) max, A
s.t. f(x) — X e Pqg(S)

where
Si={x:g(x)=0,Vi=1,--,m}, 0

x/\/\\

Pa(S) :={p(x) € Ry[x] : p(x) > 0Vx € S}, I N4
is the cone of polynomials of degree at most
d that are non-negative over S.

-
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A General Recipe for Relaxations of PO

[PO-P] min f(x) = [PO-D] max A
st. xe8$ st. f(x) =X e Pqy(S)

The condition f(x) — A € Py(S) is N'P-hard in general.

We relax it to f(x) — A € M for a suitable M C P4(S).
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A General Recipe for Relaxations of PO

[PO-P] min f(x) = [PO-D] max A
st. xe8$ st. f(x) =X e Pqy(S)

The condition f(x) — A € Py(S) is N'P-hard in general.

We relax it to f(x) — A € M for a suitable M C P4(S).

[PO-M] max A
st. f(x)—AeM

provides a lower bound for the original problem.

@ The choice of M is a key factor in obtaining good bounds on the
problem.
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Sum-of-square Relaxations for PO

[Lasserre 2001, Parillo 2000] For each r > 0, define the relaxation,

[SOS/] z7° = maxy, A
s.t. f(x)—Aek,

provides a lower bound on the original problem where

Kr =S50S+ S0S,_ (g8 (x)-

i=1

e For each r, [SOS,] is an SDP program
@ As r — 0o, z7° converges to global optimum of the original problem.

@ As r increases, computational complexity increases rapidly, which
makes it impossible to solve large-scale problem in practice.

June 18, 2024
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Overcoming the size blow-up

“Classical” approach:

Use results from algebraic geometry representation to produce hierarchies
of approximations converging to the original problem.
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Overcoming the size blow-up

“Classical” approach:

Use results from algebraic geometry representation to produce hierarchies
of approximations converging to the original problem.

Proposed Approach:

@ Reduce the problem degree
@ Exploit the sparsity characteristics

e real-world energy networks are represented by sparse graphs where the
degree of most nodes in the networks is small

@ Develop cheaper relaxations
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Sparse Relaxations of PO

Polynomial Optimization Problem

[PO-P] z = miny
s.t.

f(x)
gi(x) = 0,

i=1

g oo

)

m.
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Sparse Relaxations of PO

Polynomial Optimization Problem

[PO-P] z = min, f(x)
st. g(x)>0, i=1...,m.

Hierarchy of sparse SDP Relaxations for POP

@ [Waki et al. 2006] For each r > 0, define the relaxation,

[SPSOS,] z7**° = maxxs, A
s.t. f(X) — A= Zk (Soyk(X) + Zi S,'yk(X)g,‘(X))

si,k(x) is sos supported on Cj

where Cj is the set of maximal cliques of a chordal extension of the
correlative sparsity pattern graph

@ as r grows, zP%%° — z.

= = = = = FaNeus

Bissan Ghaddar PO Applied to Power Network Operations June 18, 2024 7/35



Sparse Relaxations of PO

Polynomial Optimization Problem

[PO-P] z = min, f(x)
st. g(x)>0, i=1...,m.

Hierarchy of sparse SDP Relaxations for POP

@ [Waki et al. 2006] For each r > 0, define the relaxation,

[SPSOS,] z7**° = maxxs, A
s.t. f(X) —A= Zk (Soyk(X) + Zi S,'yk(X)g,‘(X))

si,k(x) is sos supported on Cj

where Cj is the set of maximal cliques of a chordal extension of the
correlative sparsity pattern graph

@ as r grows, zP%%° — z.

Reduction in size
@ SDP matrices with size (/““/™") (much smaller than [SOS,] if |Cx| < n).

= = = FaNeus
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SOCP-based Hierarchy for PO

For each r > 0, define the relaxation,

[SDD,] z8% = max, A
s.t. f(x)—XeS,

provides a lower bound on the original problem where

Sy = SDSOS, + > " SDSOS, _yuy(5)8i(%)

i=1

@ For each r, [SDD,] is a second-order cone program.
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SOCP-based Hierarchy for PO

For each r > 0, define the relaxation,

[SDD,] z8% = max, A
s.t. f(x)—XeS,

provides a lower bound on the original problem where

Sy = SDSOS, + > " SDSOS, _yuy(5)8i(%)

i=1

@ For each r, [SDD,] is a second-order cone program.

Reduction in computational time
@ computationally easier to solve

@ replacing SOS polynomials with SDSOS polynomials does not
guarantee convergence
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@ In many real-world decision problems, combined challenge of

e Nonconvex models and dynamics, e.g. energy conservation laws
(friction induced headloss, AC power flow).

e Nonconvex objective functions, e.g. energy costs, risk-averse
optimization.

e Combinations of discrete and continuous decisions, e.g. valve
placement, unit commitment, dispatch.

e Uncertainty in problem parameters, e.g. demands, prices, supply.

@ However, we do have

e Constraints and decision variables are highly structured, e.g. sparsity of
traffic, energy or water networks.

e Samples of realizations for uncertain system parameters; e.g. collected
iteratively by sensors and meters

@ Optimal decision for these hard, nonconvex real-world problems is in
high demand!
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Proposed Solution Methods
Decision optimization problem

Mathematical optimization model

!
Structured Polynomial Optimization Problem

@ Add valid inequalities to strengthen convexification.

o Exploit sparsity.
o Efficient algorithms for solving SDPs.
@ POP under uncertainty.

!
Conic relaxations for POP

@ Develop new approximation hierarchies.

@ Exploit structure in the new conic relaxations.
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Application

Energy Networks
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Application - AC Optimal Power Flow

Economic dispatch of power generation is a critical problem for utility companies,

519%bn Worldwide

Production Cost [O’NEeill et al 2012]:{ 112%bn USA

Goal: Determine the optimal operating point of
an electric power generation system.

Challenges:

@ non-convex due to the non-linear power
flow equations

@ lack of global solver for generic power Benefits:
systems @ Even 1% improvement in dispatch would
Approach: result in 1-5%bn savings for US (4-20$bn
@ SDP provide strong bounds for ACOPF worldwide) [O'Neill et al. 2012]

[Lavaei & Low 2010]

@ Research on polynomial optimization
approach.
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Challenges - AC Optimal Power Flow

Optimization over power systems:
@ Large-scale power transmission and distribution networks.
o AC power flow.
@ Integration of distributed, uncertain renewable supply.
o

Handling discrete decisions.
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ACOPF: Parameters

N: set of buses G: set of generators
E: set of branches L: set of branches with apparent power flow limit

Bus Parameters

ppin - pmax, limits on active generation capacity at bus k.

i @ limits on reactive generation capacity at bus k.
Pk, Qk. active and reactive load (demand) at each bus k.
vmin - ymex, limits on the absolute value of the voltage at a given bus k.
R‘le“\”: network admittance matrix.

Branch Parameters

Sipex: limit on the absolute value of the apparent power of a branch (/, m).
Bim: total shunt susceptance.
&m + jbim:  the series admittance of the line.
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ACOPF: Parameters

Lavaei and Low notation:
Yk = exey y,

bim . .
Yim = (Jé + &im + jbim)ere] — (gim + jbim)ere.,

y, =L {?R(yk ) SO _Yk)}
2 ISk =y ) Ry +yd))”

v, - L F(yk +yd) Ry — y[)}
2 Ry —w) S +yd))’

-
M, — {ekek 0 T} 7

0 exey
v, =% P%(y/m + Vi) S — y/m)]
"2 [SWim = vim) Rm + Vi)
¥, =L F(y/m +yim) Ry, — y/m)}
m 2 8%(ylz; - ylm) %(ylm + yl;)
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ACOPF: Formulation

Decision Variables: x := [RV), SV4]".

[OPF-D4] min Power Generation Cost
s.t. Active Power Constraint
Reactive Power Constraint
Voltage Constraint

Apparent Power Flow Constraint
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ACOPF: Formulation

Decision Variables: x := [RV)  SV4]'.

[OPF-D4] min Y (2 (Pf + tr(YioxT))? + ci(P{ + tr(YiexT)) + )
keG
s.t. Active Power Constraint
Reactive Power Constraint
Voltage Constraint
Apparent Power Flow Constraint
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ACOPF: Formulation

Decision Variables: x := [RV) SVi]'.

[OPF-D4] min Y (cZ(P{ + tr(YioxT))? + ch(P{ + tr(YioxT)) + )
keG
st. PPN <tr(YixxT) + Pg < PP
Reactive Power Constraint
Voltage Constraint
Apparent Power Flow Constraint
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ACOPF: Formulation

Decision Variables: x := [RV) SV4]T.

[OPF-D4] min > (Z(P{ + tr(Yiox"))? + ci(P{ + tr(YiexT)) + f)
keG
s.t. PPN < tr(Yixx ) + PZ < ppax
QP < tr(Vixx ) + Qf < Q™
Voltage Constraint
Apparent Power Flow Constraint
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ACOPF: Formulation

Decision Variables: x := [RV) SV4]".

[OPF-D4] min Z (R(PY + tr(Yioxx )2 + cH(PY + tr(Yiox 7)) + 0)
keG
st. PP < tr( Vi) 4 P < PP
Q;r(ni" < tr( kaxT) + Q,‘j < QP
(VM) < tr(Mixx ) < (V)2

Apparent Power Flow Constraint
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ACOPF: Formulation

Decision Variables: x := [RV)  SV4]'.

[OPF-D4] min Y (cZ(Pf + tr(Yiox"))* + ci(P{ + tr(YiexT)) + )
keG
s.t. PPN <tr(Yixx ") + PZ < ppax
Q" < tr(Viox ") + QF < QP
(VEm)? < tr(MixxT) < (V)
(tr(VimxxT))? + (tr(Vimxx7))? < (Si)°
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ACOPF: Formulation

Decision Variables: x := [RV), SV4]".

[OPF-D4] min Z (cR(Pf +tr(YioxT))? + (P +tr(YixxT)) + cf)
keG
st. PPN < tr(YixxT) + Pg < PP
QM < tr(Yiox ") + QF < QP
(V") < tr(Moec”) < (V™)
(tr(Yimxx )2 + (tr(Vimx 7)) < (Sp)?

Optimal Power Flow is a polynomial optimization problem of degree 4,
hard to solve to optimality even for small instances [Molzahn and Hiskens
2013|[Josz et al. 2013].
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ACOPF: Quadratic PO

[OPF-Q] min Z ((P)? + cp(PE + tr(YixxT)) + cf)
keG
PR < tr(YixxT) + Pg < PR
Q™ < tr(Yixx ) + QF < Q¥
(V)2 < tr(MosecT) < (V)2
Pim + Qi < (Si)?
PE = tr(kaxT) + P,‘j
Pim = tr( Y/mxxT)
Qim = tr( \7,mxxT)

[OPF-Q] has |G| + 2|L]| additional variables which can be relatively small
as |G| < |N| and |L] < |E].
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Optimal Power Flow - Duality

Using duality, the following results hold for the ACOPF problem:

@ The first level of the [SOS,] hierarchy of [OPF-Q] is the conic dual of
Optimization 3 Proposed by Lavaei and Low, 2010.

@ The first level of the [SDD,] hierarchy of [OPF-Q] is the conic dual of
Problem R, Proposed by Low 2013.
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Exploiting Sparsity

@ Sparsity of admittance matrix can be exploited. [Stott 1974].
@ Exploit sparsity in SDP relaxation for OPF [Molzahn et al. 2013].
@ SparseColO package [Fujisawa et al. 2010], [Kim et al. 2010].
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Sparsity of the SDP relaxation: 39 Buses

U=
200
] 1000 2000 3000 4000 5000 G000 7000
nz 5 5992
0

200

400

600

800

1 1 e - e
a 500 1000 1500 2000 |25Ell:l |

e {572

| n  nnz(A) sum(SDP_size) max(SDP_size) #SDP Blocks CPU;

SDP 7114 5992 6880 78 95 6.4
S-SDP | 2526 6192 2292 18 103 0.3
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OPF - Results

Gap (%) Runtime (seconds)
Test Case |N| |E| [SDD5] [SOS;] [SPSOS,] [SDD5] [SOS;] [SPSOS;]
case3_Imbd 3 3 1.32 0.39 0.39 <1 <1 <1
case5_pjm 5 6 14.55 5.22 5.22 <1 <1 <1
casel4_ieee 14 20 0.11 0 0 <1 <1 <1
case24 _ieee_rts 24 38 0.02 0 0 <1 <1 <1
case30.as 30 41 0.06 0 0 <1 2 <1
case30_fsr 30 41 0.39 0 0 <1 2 <1
case30._ieee 30 41 10.81 0.01 0.01 <1 2 <1
case39_epri 39 46 0.49 0.01 0.01 <1 6 <1
caseb7_ieee 57 80 0.46 0.01 0 <1 20 <1
case73_ieee_rts 73 120 0.04 0 0 <1 60 <1
case89_pegase 89 210 0.75 0.01 0.01 <1 160 <1
casell8._ieee 118 186 2.27 0.18 0.18 <1 608 <1
casel62_ieee_dtc 162 284 7.68 n.d. 2.26 <1 n.d. 3
casel79_goc 179 263 0.13 n.d. 0.06 <1 n.d. <1
case200_tamu 200 245 0.01 n.d. 0 <1 n.d. <1
case240_pserc 240 4438 3.92 n.d. 2.28 <1 n.d. 2
case300._ieee 300 411 2.6 n.d. 0.11 <1 n.d. 2
case500_tamu 500 597 5.39 n.d. 2.11 <1 n.d. 2
case588_sdet 588 686 2.10 n.d. 0.67 <1 n.d. 3
casel354_pegase 1354 1991 2.44 n.d. 0.56 3 n.d. 7
casel888_rte 1888 2531 2.06 n.d. 1.75 4 n.d. 11
casel951_rte 1951 2596 0.50 n.d. 0.02 5 n.d. 11
case2000_tamu 2000 3206 0.21 n.d. - 3 nd. 119
case2316_sdet 2316 3017 2.30 n.d. 0.73 9 n.d. 141
case2383wp_k 2383 2896 1.21 n.d. 0.38 4 n.d. 80
case2736sp-k 2736 3504 2.35 n.d. 0.01 4 n.d. 75
case2737sop_k 2737 3506 11.13 n.d. 0.02 2 n.d. 69
case2746wop_k 2746 3514 2.01 n.d. 0.01 4 n.d. 91
case2746wp_k 2746 3514 18.24 n.d. 0.01 3 n.d. 90

PO Applied to Power Network Operations June 1



OPF - Results

Gap (%) Runtime (seconds)
Test Case |N| |E| [SDD;] [SOS5] [SPSOS,] [SDD3] [SOS»] [SPSOS;]
case2848._rte 2848 3776 0.41 n.d. 0.05 6 n.d. 21
case2853_sdet 2853 3921 3.09 n.d. 0.55 8 n.d. 61
case2868.rte 2868 3808 0.55 n.d. 0.21 7 n.d. 19
case2869_pegase 2869 4582 1.08 n.d. 0.42 9 n.d. 26
case3012wp_k 3012 3572 15.28 n.d. 0.17 4 n.d. 127
case3120sp_k 3120 3693 15.61 n.d. 0.14 4 n.d. 139
case3375wp_k 3375 4161 1.60 n.d. n.d. 5 n.d. n.d.
case4661_sdet 4661 5997 10.24 n.d. n.d. 21 n.d. n.d.
case6468_rte 6468 9000 2.56 n.d. 0.47 18 n.d. 174
case6470_rte 6470 9005 3.88 n.d. 0.47 23 n.d. 210
case6495_rte 6495 9019 18.07 n.d. 14.76 25 n.d. 232
case6515_rte 6515 9037 8.52 n.d. 6.46 24 n.d. 214
case9241_pegase 9241 16049 2.94 n.d. 2.18 65 n.d. 524
casel0000_tamu 10000 12706 0.82 nd. 0.39 21 n.d. 1009
casel3659_pegase 13659 20467 1.66 n.d. n.d. 74 n.d. n.d.

Paper: Optimal Power Flow as a Polynomial Optimization Problem, IEEE Transactions
on Power Systems.
Paper: Alternative LP and SOCP Hierarchies for ACOPF problems, IEEE Transactions
on Power Systems.
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Current Work
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Conic relaxations

o develop methodologies to @ combine SOCP and SDP
handle uncertainty relaxations

@ apply to practical problems @ apply to MIQCQP
(ACOPF with uncertain (multiperiod ACOPF with
demand) binary variables)
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Uncertainty in Power Systems

ACOPF with uncertainty

@ Demand uncertainty and renewable
energy penetration

@ Adjustable Robust QCQP with
ellipsoidal uncertainty

Paper: Adjustable Robust Two-Stage Polynomial Optimization with Application to AC
Optimal Power Flow, SIAM Journal on Optimization, 2023.
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ACOPF as a non-convex quadratic optimization problem

[@P] = min y'Py+p'y+po  (convex)

s.t. Ay < b (convex)
XTQ,'X +qgi=y; forall e {1, 500 meq} (non-convex)
XTQJ'X + qj >0 for all j € {]_, 000 m,-,,} (non-convex)

@ y are control variables (e.g., active power on PV buses)

@ x are state variables (voltages in rectangular form)
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Adjustable Robust ACOPF

@ Consider uncertainty in power demands or generation
o Ellipsoidal uncertainty set: Q = {¢ € R" : (T¥(¢ < 1}

[ARQP] : myin yIPy +pty + po
s.t. Ay <b
and for any ¢ € Q there is x such that:
xTQix + m;-rC +qi=y forallie{l,..., me}
x'Qix+m/¢+¢q >0 forallje{l,... mp}
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Adjustable Robust ACOPF

@ Consider uncertainty in power demands or generation
o Ellipsoidal uncertainty set: Q = {¢ € R" : (T¥(¢ < 1}

[ARQP] : myin yIPy +pty + po
s.t. Ay <b
and for any ¢ € Q there is x such that:
xTQix + m;-rC +qi=y forallie{l,..., me}
x'Qix+m/¢+¢q >0 forallje{l,... mp}

@ How to approach “robust” equalities?

Bissan Ghaddar PO Applied to Power Network Operations June 18, 2024



Affine equalities

Eliminate x, obtain a robust problem in y

min y Py +p'y +po
s.t. Ay <b
and for any ¢ € Q there is x such that:
Di¢+ Dy +d = x
XTij+ mJ-TC+ g >0 forallje{l,..., mpn}
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Affine equalities

min Yy Py +p'y + po
s.t. Ay <b
and for any ¢ € Q there is x such that:
Di¢+ Dy +d = x
xTQJ-x+ mj-TC+ g >0 forallje{l,...,mp}

= min Yy Py +p'y+ po

s.t. Ay <b
and forany ( € Q, j € {1,....,mj,}

(D1 + Doy + d)" Q;(D1¢ + Doy + d) + mi¢ + q; > 0
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Affine equalities

Eliminate ¢, obtain an SDP in y

= min y'Py+ply+po

s.t. Ay <b
and for all ¢(T¥¢ <1, je{l,...,mjp}

CPACH (Y B+ b1 )¢+ (v G+ ¢y +d; >0
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Affine equalities

= min
y

s. t.

S-lemma
VoA
s. t.

Bissan Ghaddar

y Py +pty+po

Ay < b

and for all (TX¢ <1, je{1,...,mp}

CTAC+H (Y B+ b )+ (v G+¢l)y+d >0

yT Py + pTy + pPo (convex, tractable)

Ay < b  (convex, tractable)
and for all j € {1,...,mj,}

g/l CJTy +di = A, %(YTBJ' + bJT) o (convex,
%(BJT.)/ + bj), )\J'Z + Aj - tractable)

Aj =0 (convex, tractable)

yT Cy =1 (non-convex, but doable)
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Algorithm to solve [ARQP]

@ Approximate quadratic in x (state var.) functions in each equality by
piecewise affine functions in x

@ Express x as a function of (y, (), eliminate x and equalities

Result: quadratic robust optimization problem in (y, ()

Bissan Ghaddar
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Algorithm to solve [ARQP]

@ Approximate quadratic in x (state var.) functions in each equality by
piecewise affine functions in x

@ Express x as a function of (y, (), eliminate x and equalities
Result: quadratic robust optimization problem in (y, ()
@ Use S-lemma to eliminate ¢ (uncertainty var.)

Result: SDP in y (control var.) with quadratic equalities
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Algorithm to solve [ARQP]

e Approximate quadratic in x (state var.) functions in each equality by
piecewise affine functions in x

@ Express x as a function of (y, (), eliminate x and equalities
Result: quadratic robust optimization problem in (y, ()

@ Use S-lemma to eliminate ¢ (uncertainty var.)
Result: SDP in y (control var.) with quadratic equalities

@ Solve SDP with quadratic equalities via Alternating Projections
Result: robust control var. solution to the piecewise affine
approximation of [ARQP]

Bissan Ghaddar PO Applied to Power Network Operations June 18, 2024



Algorithm to solve [ARQP]

e Approximate quadratic in x (state var.) functions in each equality by
piecewise affine functions in x

@ Express x as a function of (y, (), eliminate x and equalities
Result: quadratic robust optimization problem in (y, ()

@ Use S-lemma to eliminate ¢ (uncertainty var.)
Result: SDP in y (control var.) with quadratic equalities

@ Solve SDP with quadratic equalities via Alternating Projections
Result: robust control var. solution to the piecewise affine
approximation of [ARQP]

o Check feasibility of the above control var. solution for [ARQP]
Result: certificate of (in)feasibility for [ARQP]
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Details of piecewise-affine approximations

@ Partition the feasible set for x into subsets 51,...,5;
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Details of piecewise-affine approximations

@ Partition the feasible set for x into subsets 51,...,5;

e Apply “Algorithm to solve [ARQP]" on restrictions of [ARQP] to each
subset Sy, k < J. Use affine approximations on Sj:

e Let X be the “center” of Sy
e Linearize equality constraints using Taylor series:

xPQix = T Qix + 8T Qi(x — %) forall i € {1,..., meq}
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Details of piecewise-affine approximations

@ Partition the feasible set for x into subsets 51,...,5;

e Apply “Algorithm to solve [ARQP]" on restrictions of [ARQP] to each
subset Sy, k < J. Use affine approximations on Sj:

e Let X be the “center” of Sy
e Linearize equality constraints using Taylor series:

xPQix = T Qix + 8T Qi(x — %) forall i € {1,..., meq}

@ Choose the best robust control var. solution among restrictions
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Details of piecewise-affine approximations

@ Partition the feasible set for x into subsets 51,...,5;

e Apply “Algorithm to solve [ARQP]" on restrictions of [ARQP] to each
subset Sy, k < J. Use affine approximations on Sj:

e Let X be the “center” of Sy
e Linearize equality constraints using Taylor series:

xPQix = T Qix + 8T Qi(x — %) forall i € {1,..., meq}
@ Choose the best robust control var. solution among restrictions

@ Basic feasibility check: solve the nominal power flow equalities
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Numerical experiments: instances with up to 9 buses

Uncertainty, Average . Constraint Max # violations, Max # violations,
% of load ‘ Model objective Time, sec. violations, % per exper., PQ ‘ per exper., VI
case 6ww, 6 buses
Nominal 313 0.0 43.9 0 2
1 DCOPF - - - - -
SDP 31.4 28.4 22.1 0
Taylor 31.6 69.4 0.0 0 0
case 9, 9 buses
Nominal 53.0 0.0 0.7 0 2
1 DCOPF 53.2 9.1 0.0 0 0
SDP 53.0 22.5 100.0 0 2
Taylor 53.3 57.6 0.0 0 0
Nominal 53.2 0.0 35.7 0 2
5 DCOPF 53.5 13.8 0.0 0 0
SDP 53.2 30.5 100.0 0 3
Taylor 53.4 72.7 0.0 0 0
Nominal 53.5 0.0 43.9 0 2
10 DCOPF 54.4 12.6 0.1 1 0
SDP 53.6 23.8 87.5 0 3
Taylor 53.7 70.4 0.0 0 0
Nominal 54.9 0.0 48.5 1 5
20 DCOPF 55.5 12.1 3.4 1 0
SDP 55.0 29.4 99.8 1 6
Taylor 55.0 74.4 1.0 1 0
Nominal 57.1 0.0 51.3 1 6
30 DCOPF - - - -
SDP 57.4 26.1 97.8 1 6
Taylor 57.2 68.1 7.1 1 2
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Numerical experiments: instances with 30 to 118 buses

Uncertainty, Model Average Time. sec Constraint Max # violations, Max # violations,
% of load objective ' " | violations, % per exper., PQ per exper., VI
case 30, 30 buses

Nominal 6.1 0.1 100.0 0 2
1 DCOPF - - - - -
SDP 5.8 178.6 31.7 0 2
Taylor 59 177.2 1.7 0 2
case 57, 57 buses
Nominal 417.4 0.1 70.6 2 1
1 DCOPF 418.5 43.0 100.0 2 1
Taylor 426.8 467.2 0.0 0 0
case 118, 118 buses
Nominal 1296.7 0.2 99.5 9 0
1 DCOPF 1315.6 94.9 100.0 21 0
Taylor 1301.3 830.0 1.1 1 0
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Conclusions

@ Solved large-scale deterministic problems

@ Solved small and medium scale problems with uncertainty

e Finds control solutions in short time for small to middle-sized
MATPOWER cases
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Conclusions

@ Solved large-scale deterministic problems

@ Solved small and medium scale problems with uncertainty
e Finds control solutions in short time for small to middle-sized
MATPOWER cases
e Works best for low to moderate levels of uncertainty
e Generalizes to adjustable robust polynomial problems
@ Ongoing: Solve small and medium scale problems with unit
commitment and AC constraints
e combine sparsity and SDP relaxations in a branch and bound framework
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Conclusions

@ Solved large-scale deterministic problems

@ Solved small and medium scale problems with uncertainty
e Finds control solutions in short time for small to middle-sized
MATPOWER. cases
e Works best for low to moderate levels of uncertainty
e Generalizes to adjustable robust polynomial problems

@ Ongoing: Solve small and medium scale problems with unit
commitment and AC constraints
e combine sparsity and SDP relaxations in a branch and bound framework
e Find reasonable gap in a short amount of time for small to middle-sized
MATPOWER cases
o Generalize to MIQCQP
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Thank you!
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