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Polynomial Programming

A polynomial program has the following form:

[PO-P] min f (x)

s.t. gi (x) ≥ 0 i = {1, . . . ,m}

In general, solving a polynomial program is NP-hard.

Relaxations for PO using sums-of-squares decomposition have been
shown to be very tight.

Sequence of SDP relaxations converging to the optimal.
But, computationally expensive to solve in practice.

Research objectives

Develop new methods for solving general PO.

Apply these approaches to practical applications.
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A General Recipe for Relaxations of PO

(PO-P) z = minx f (x)
s.t. gi (x) ≥ 0, i = 1, . . . ,m.

(PO-P) is equivalent to

(PO-D) maxλ λ
s.t. f (x)− λ ≥ 0 ∀x ∈ S

where
S := {x : gi (x) ≥ 0, ∀i = 1, · · · ,m},

-28.9255 56.69391 1 -1.96 23 0

-26.0919 50.0965 1 -1.92 36.30596 0

-23.4849 44.15167 1 -1.88 47.53768 0

-21.0906 38.80672 1 -1.84 56.85987 0

-18.8957 34.01222 1 -1.80 64.42925 0

-16.8874 29.72186 1 -1.76 70.39482 0

-15.0537 25.8923 1 -1.72 74.89807 0

-13.3828 22.48307 1 -1.68 78.07321 0

-11.8637 19.45643 1 -1.64 80.04738 0

-10.4858 16.77722 1 -1.60 80.94085 0

-9.23896 14.41277 1 -1.56 80.86726 0

-8.11368 12.3328 1 -1.52 79.93382 0

-7.10082 10.50922 1 -1.48 78.24148 0

-6.19174 8.9161 1 -1.44 75.88519 0

-5.37824 7.529536 1 -1.40 72.95407 0

-4.65259 6.327519 1 -1.36 69.53158 0

-4.00746 5.289853 1 -1.32 65.69579 0

f(x)
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A General Recipe for Relaxations of PO

[PO-P] min f (x) ≡ [PO-D] max λ
s.t. x ∈ S s.t. f (x)− λ ∈ Pd(S)

The condition f (x)− λ ∈ Pd(S) is NP-hard in general.

We relax it to f (x)− λ ∈ M for a suitable M ⊆ Pd(S).

[PO-M] max λ
s.t. f (x)− λ ∈ M

provides a lower bound for the original problem.

The choice of M is a key factor in obtaining good bounds on the
problem.
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Sum-of-square Relaxations for PO

[Lasserre 2001, Parillo 2000] For each r > 0, define the relaxation,

[SOSr ] z
sos
r = maxλ λ

s.t. f (x)− λ ∈ Kr

provides a lower bound on the original problem where

Kr = SOSr +
m∑
i=1

SOSr−deg(gi )gi (x).

For each r , [SOSr ] is an SDP program

As r → ∞, zsosr converges to global optimum of the original problem.

As r increases, computational complexity increases rapidly, which
makes it impossible to solve large-scale problem in practice.
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Overcoming the size blow-up

“Classical” approach:

Use results from algebraic geometry representation to produce hierarchies
of approximations converging to the original problem.

Proposed Approach:

Reduce the problem degree

Exploit the sparsity characteristics

real-world energy networks are represented by sparse graphs where the
degree of most nodes in the networks is small

Develop cheaper relaxations
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Sparse Relaxations of PO

Polynomial Optimization Problem

[PO-P] z = minx f (x)
s.t. gi (x) ≥ 0, i = 1, . . . ,m.

Hierarchy of sparse SDP Relaxations for POP

[Waki et al. 2006] For each r > 0, define the relaxation,

[SPSOSr ] z
spsos
r = maxλ,si,k λ

s.t. f (x)− λ =
∑

k

(
s0,k(x) +

∑
i si,k(x)gi (x)

)
si,k(x) is sos supported on Ck

where Ck is the set of maximal cliques of a chordal extension of the
correlative sparsity pattern graph

as r grows, z spsosr → z .

Reduction in size
SDP matrices with size

(|Ck |+r
r

)
(much smaller than [SOSr ] if |Ck | ≪ n).
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SOCP-based Hierarchy for PO

For each r > 0, define the relaxation,

[SDDr ] z
sdd
r = maxλ λ

s.t. f (x)− λ ∈ Sr

provides a lower bound on the original problem where

Sr = SDSOSr +
m∑
i=1

SDSOSr−deg(gi )gi (x)

For each r , [SDDr ] is a second-order cone program.

Reduction in computational time

computationally easier to solve

replacing SOS polynomials with SDSOS polynomials does not
guarantee convergence

Bissan Ghaddar PO Applied to Power Network Operations June 18, 2024 8 / 35



SOCP-based Hierarchy for PO

For each r > 0, define the relaxation,

[SDDr ] z
sdd
r = maxλ λ

s.t. f (x)− λ ∈ Sr

provides a lower bound on the original problem where

Sr = SDSOSr +
m∑
i=1

SDSOSr−deg(gi )gi (x)

For each r , [SDDr ] is a second-order cone program.

Reduction in computational time

computationally easier to solve

replacing SOS polynomials with SDSOS polynomials does not
guarantee convergence

Bissan Ghaddar PO Applied to Power Network Operations June 18, 2024 8 / 35



Motivation

In many real-world decision problems, combined challenge of

Nonconvex models and dynamics, e.g. energy conservation laws
(friction induced headloss, AC power flow).
Nonconvex objective functions, e.g. energy costs, risk-averse
optimization.
Combinations of discrete and continuous decisions, e.g. valve
placement, unit commitment, dispatch.
Uncertainty in problem parameters, e.g. demands, prices, supply.

However, we do have

Constraints and decision variables are highly structured, e.g. sparsity of
traffic, energy or water networks.
Samples of realizations for uncertain system parameters; e.g. collected
iteratively by sensors and meters

Optimal decision for these hard, nonconvex real-world problems is in
high demand!
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Proposed Solution Methods

Decision optimization problem

Mathematical optimization model

↓

Structured Polynomial Optimization Problem

Add valid inequalities to strengthen convexification.

Exploit sparsity.

Efficient algorithms for solving SDPs.

POP under uncertainty.

↓

Conic relaxations for POP

Develop new approximation hierarchies.

Exploit structure in the new conic relaxations.
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Application

Energy Networks
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Application - AC Optimal Power Flow

Economic dispatch of power generation is a critical problem for utility companies,

Production Cost [O’Neill et al 2012]:

{
519$bn Worldwide

112$bn USA

Goal: Determine the optimal operating point of
an electric power generation system.

Challenges:

non-convex due to the non-linear power
flow equations

lack of global solver for generic power
systems

Approach:

SDP provide strong bounds for ACOPF
[Lavaei & Low 2010]

Research on polynomial optimization
approach.

  

Benefits:

Even 1% improvement in dispatch would
result in 1-5$bn savings for US (4-20$bn
worldwide) [O’Neill et al. 2012]
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Challenges - AC Optimal Power Flow
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Optimization over power systems:

Large-scale power transmission and distribution networks.

AC power flow.

Integration of distributed, uncertain renewable supply.

Handling discrete decisions.
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ACOPF: Parameters

Sets

N: set of buses G : set of generators
E : set of branches L: set of branches with apparent power flow limit

Bus Parameters

Pmin
k , Pmax

k : limits on active generation capacity at bus k.
Qmin

k , Qmax
k : limits on reactive generation capacity at bus k.

Pd
k , Q

d
k : active and reactive load (demand) at each bus k.

Vmin
k , Vmax

k : limits on the absolute value of the voltage at a given bus k.

y ∈ R|N|×|N|: network admittance matrix.

Branch Parameters

Smax
lm : limit on the absolute value of the apparent power of a branch (l ,m).

b̄lm: total shunt susceptance.
glm + jblm: the series admittance of the line.
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ACOPF: Parameters

Lavaei and Low notation:

yk = eke
T
k y ,

ylm = (j
b̄lm
2

+ glm + jblm)ele
T
l − (glm + jblm)ele

T
m ,

Yk =
1

2

[
ℜ(yk + yT

k ) ℑ(yT
k − yk)

ℑ(yk − yT
k )) ℜ(yk + yT

k )

]
,

Ȳk = −1

2

[
ℑ(yk + yT

k ) ℜ(yk − yT
k )

ℜ(yT
k − yk) ℑ(yk + yT

k )

]
,

Mk =

[
eke

T
k 0

0 eke
T
k

]
,

Ylm =
1

2

[
ℜ(ylm + yT

lm) ℑ(yT
lm − ylm)

ℑ(ylm − yT
lm) ℜ(ylm + yT

lm)

]
Ȳlm = −1

2

[
ℑ(ylm + yT

lm) ℜ(yT
lm − ylm)

ℜ(yT
lm − ylm) ℑ(ylm + yT

lm)

]
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ACOPF: Formulation

Decision Variables: x := [ℜVk ℑVk ]
T .

[OPF-D4] min Power Generation Cost

s.t. Active Power Constraint

Reactive Power Constraint

Voltage Constraint

Apparent Power Flow Constraint

Bissan Ghaddar PO Applied to Power Network Operations June 18, 2024 16 / 35



ACOPF: Formulation

Decision Variables: x := [ℜVk ℑVk ]
T .

[OPF-D4] min
∑
k∈G

(
c2k (P

d
k + tr(Ykxx

T ))2 + c1k (P
d
k + tr(Ykxx

T )) + c0k
)

s.t. Active Power Constraint

Reactive Power Constraint

Voltage Constraint

Apparent Power Flow Constraint

Bissan Ghaddar PO Applied to Power Network Operations June 18, 2024 16 / 35



ACOPF: Formulation

Decision Variables: x := [ℜVk ℑVk ]
T .

[OPF-D4] min
∑
k∈G

(
c2k (P

d
k + tr(Ykxx

T ))2 + c1k (P
d
k + tr(Ykxx

T )) + c0k
)

s.t. Pmin
k ≤ tr(Ykxx

T ) + Pd
k ≤ Pmax

k

Reactive Power Constraint

Voltage Constraint

Apparent Power Flow Constraint

Bissan Ghaddar PO Applied to Power Network Operations June 18, 2024 16 / 35



ACOPF: Formulation

Decision Variables: x := [ℜVk ℑVk ]
T .

[OPF-D4] min
∑
k∈G

(
c2k (P

d
k + tr(Ykxx

T ))2 + c1k (P
d
k + tr(Ykxx

T )) + c0k
)

s.t. Pmin
k ≤ tr(Ykxx

T ) + Pd
k ≤ Pmax

k

Qmin
k ≤ tr(Ȳkxx
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ACOPF: Formulation

Decision Variables: x := [ℜVk ℑVk ]
T .

[OPF-D4] min
∑
k∈G
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k )2
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T ))2 + (tr(Ȳlmxx

T ))2 ≤ (Smax
lm )2

Optimal Power Flow is a polynomial optimization problem of degree 4,
hard to solve to optimality even for small instances [Molzahn and Hiskens
2013][Josz et al. 2013].
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ACOPF: Quadratic PO

[OPF-Q] min
∑
k∈G

(
c2k (P

g
k )

2 + c1k (P
d
k + tr(Ykxx

T )) + c0k
)

Pmin
k ≤ tr(Ykxx

T ) + Pd
k ≤ Pmax

k

Qmin
k ≤ tr(Ȳkxx

T ) + Qd
k ≤ Qmax

k

(Vmin
k )2 ≤ tr(Mkxx

T ) ≤ (Vmax
k )2

P2
lm + Q2

lm ≤ (Smax
lm )2

Pg
k = tr(Ykxx

T ) + Pd
k

Plm = tr(Ylmxx
T )

Qlm = tr(Ȳlmxx
T )

[OPF-Q] has |G |+ 2|L| additional variables which can be relatively small
as |G | ≪ |N| and |L| ≪ |E |.
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Optimal Power Flow - Duality

Using duality, the following results hold for the ACOPF problem:

1 The first level of the [SOSr ] hierarchy of [OPF-Q] is the conic dual of
Optimization 3 Proposed by Lavaei and Low, 2010.

2 The first level of the [SDDr ] hierarchy of [OPF-Q] is the conic dual of
Problem R2 Proposed by Low 2013.
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Exploiting Sparsity

Sparsity of admittance matrix can be exploited. [Stott 1974].

Exploit sparsity in SDP relaxation for OPF [Molzahn et al. 2013].

SparseCoLO package [Fujisawa et al. 2010], [Kim et al. 2010].
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Sparsity of the SDP relaxation: 39 Buses

  

n nnz(A) sum(SDP size) max(SDP size) #SDP Blocks CPUt

SDP 7114 5992 6880 78 95 6.4
S-SDP 2526 6192 2292 18 103 0.3
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OPF - Results

Gap (%) Runtime (seconds)
Test Case |N| |E | [SDD2] [SOS2] [SPSOS2] [SDD2] [SOS2] [SPSOS2]

case3 lmbd 3 3 1.32 0.39 0.39 <1 <1 <1
case5 pjm 5 6 14.55 5.22 5.22 <1 <1 <1

case14 ieee 14 20 0.11 0 0 <1 <1 <1
case24 ieee rts 24 38 0.02 0 0 <1 <1 <1

case30 as 30 41 0.06 0 0 <1 2 <1
case30 fsr 30 41 0.39 0 0 <1 2 <1

case30 ieee 30 41 10.81 0.01 0.01 <1 2 <1
case39 epri 39 46 0.49 0.01 0.01 <1 6 <1
case57 ieee 57 80 0.46 0.01 0 <1 20 <1

case73 ieee rts 73 120 0.04 0 0 <1 60 <1
case89 pegase 89 210 0.75 0.01 0.01 <1 160 <1
case118 ieee 118 186 2.27 0.18 0.18 <1 608 <1

case162 ieee dtc 162 284 7.68 n.d. 2.26 <1 n.d. 3
case179 goc 179 263 0.13 n.d. 0.06 <1 n.d. <1

case200 tamu 200 245 0.01 n.d. 0 <1 n.d. <1
case240 pserc 240 448 3.92 n.d. 2.28 <1 n.d. 2
case300 ieee 300 411 2.6 n.d. 0.11 <1 n.d. 2

case500 tamu 500 597 5.39 n.d. 2.11 <1 n.d. 2
case588 sdet 588 686 2.10 n.d. 0.67 <1 n.d. 3

case1354 pegase 1354 1991 2.44 n.d. 0.56 3 n.d. 7
case1888 rte 1888 2531 2.06 n.d. 1.75 4 n.d. 11
case1951 rte 1951 2596 0.50 n.d. 0.02 5 n.d. 11

case2000 tamu 2000 3206 0.21 n.d. – 3 n.d. 119
case2316 sdet 2316 3017 2.30 n.d. 0.73 9 n.d. 141
case2383wp k 2383 2896 1.21 n.d. 0.38 4 n.d. 80
case2736sp k 2736 3504 2.35 n.d. 0.01 4 n.d. 75

case2737sop k 2737 3506 11.13 n.d. 0.02 2 n.d. 69
case2746wop k 2746 3514 2.01 n.d. 0.01 4 n.d. 91
case2746wp k 2746 3514 18.24 n.d. 0.01 3 n.d. 90
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OPF - Results

Gap (%) Runtime (seconds)
Test Case |N| |E | [SDD2] [SOS2] [SPSOS2] [SDD2] [SOS2] [SPSOS2]

case2848 rte 2848 3776 0.41 n.d. 0.05 6 n.d. 21
case2853 sdet 2853 3921 3.09 n.d. 0.55 8 n.d. 61
case2868 rte 2868 3808 0.55 n.d. 0.21 7 n.d. 19

case2869 pegase 2869 4582 1.08 n.d. 0.42 9 n.d. 26
case3012wp k 3012 3572 15.28 n.d. 0.17 4 n.d. 127
case3120sp k 3120 3693 15.61 n.d. 0.14 4 n.d. 139
case3375wp k 3375 4161 1.60 n.d. n.d. 5 n.d. n.d.
case4661 sdet 4661 5997 10.24 n.d. n.d. 21 n.d. n.d.
case6468 rte 6468 9000 2.56 n.d. 0.47 18 n.d. 174
case6470 rte 6470 9005 3.88 n.d. 0.47 23 n.d. 210
case6495 rte 6495 9019 18.07 n.d. 14.76 25 n.d. 232
case6515 rte 6515 9037 8.52 n.d. 6.46 24 n.d. 214

case9241 pegase 9241 16049 2.94 n.d. 2.18 65 n.d. 524
case10000 tamu 10000 12706 0.82 n.d. 0.39 21 n.d. 1009

case13659 pegase 13659 20467 1.66 n.d. n.d. 74 n.d. n.d.

Paper: Optimal Power Flow as a Polynomial Optimization Problem, IEEE Transactions
on Power Systems.
Paper: Alternative LP and SOCP Hierarchies for ACOPF problems, IEEE Transactions
on Power Systems.
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Current Work
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Current Work

Uncertainty

develop methodologies to
handle uncertainty

apply to practical problems
(ACOPF with uncertain
demand)

Conic relaxations

combine SOCP and SDP
relaxations

apply to MIQCQP
(multiperiod ACOPF with
binary variables)
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Uncertainty in Power Systems

ACOPF with uncertainty

Demand uncertainty and renewable
energy penetration

Adjustable Robust QCQP with
ellipsoidal uncertainty

Paper: Adjustable Robust Two-Stage Polynomial Optimization with Application to AC
Optimal Power Flow, SIAM Journal on Optimization, 2023.
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ACOPF as a non-convex quadratic optimization problem

[QP] : min
y ,x

yTPy + pTy + p0 (convex)

s. t. Ay ≤ b (convex)

xTQix + qi = yi for all i ∈ {1, . . . ,meq} (non-convex)

xTQjx + qj ≥ 0 for all j ∈ {1, . . . ,min} (non-convex)

y are control variables (e.g., active power on PV buses)

x are state variables (voltages in rectangular form)
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Adjustable Robust ACOPF

Consider uncertainty in power demands or generation

Ellipsoidal uncertainty set: Ω = {ζ ∈ Rnζ : ζTΣζ ≤ 1}

[ARQP] : min
y

yTPy + pTy + p0

s. t. Ay ≤ b

and for any ζ ∈ Ω there is x such that:

xTQix +mT
i ζ + qi = yi for all i ∈ {1, . . . ,meq}

xTQjx +mT
j ζ + qj ≥ 0 for all j ∈ {1, . . . ,min}

How to approach “robust” equalities?
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Affine equalities

Eliminate x , obtain a robust problem in y

min
y

yTPy + pTy + p0

s. t. Ay ≤ b

and for any ζ ∈ Ω there is x such that:

D1ζ + D2y + d = x

xTQjx +mT
j ζ + qj ≥ 0 for all j ∈ {1, . . . ,min}
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Affine equalities
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y

yTPy + pTy + p0

s. t. Ay ≤ b

and for any ζ ∈ Ω there is x such that:

D1ζ + D2y + d = x

xTQjx +mT
j ζ + qj ≥ 0 for all j ∈ {1, . . . ,min}

= min
y

yTPy + pTy + p0

s. t. Ay ≤ b

and for any ζ ∈ Ω, j ∈ {1, . . . ,min}
(D1ζ + D2y + d)TQj(D1ζ + D2y + d) +mT

j ζ + qj ≥ 0
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Affine equalities

Eliminate ζ, obtain an SDP in y

= min
y

yTPy + pTy + p0

s. t. Ay ≤ b

and for all ζTΣζ ≤ 1, j ∈ {1, . . . ,min}

ζTAjζ + (yTBj + bTj )ζ + (yTCj + cTj )y + dj ≥0
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Affine equalities

= min
y

yTPy + pTy + p0

s. t. Ay ≤ b

and for all ζTΣζ ≤ 1, j ∈ {1, . . . ,min}

ζTAjζ + (yTBj + bTj )ζ + (yTCj + cTj )y + dj ≥ 0

S-lemma
= min

y ,λ,γ
yTPy + pTy + p0 (convex, tractable)

s. t. Ay ≤ b (convex, tractable)

and for all j ∈ {1, . . . ,min}[
γj + cTj y + dj − λj ,

1
2 (y

TBj + bTj )
1
2 (B

T
j y + bj), λjΣ+ Aj

]
⪰ 0

(convex,
tractable)

λj ≥ 0 (convex, tractable)

yTCy = γj (non-convex, but doable)
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Algorithm to solve [ARQP]

Approximate quadratic in x (state var.) functions in each equality by
piecewise affine functions in x

Express x as a function of (y , ζ), eliminate x and equalities

Result: quadratic robust optimization problem in (y , ζ)

Use S-lemma to eliminate ζ (uncertainty var.)

Result: SDP in y (control var.) with quadratic equalities

Solve SDP with quadratic equalities via Alternating Projections
Result: robust control var. solution to the piecewise affine
approximation of [ARQP]

Check feasibility of the above control var. solution for [ARQP]
Result: certificate of (in)feasibility for [ARQP]
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Details of piecewise-affine approximations

Partition the feasible set for x into subsets S1, . . . ,SJ

Apply “Algorithm to solve [ARQP]” on restrictions of [ARQP] to each
subset Sk , k ≤ J. Use affine approximations on Sk :

• Let x̂ be the “center” of Sk
• Linearize equality constraints using Taylor series:

xTQix → x̂TQi x̂ + x̂TQi (x − x̂) for all i ∈ {1, . . . ,meq}
Choose the best robust control var. solution among restrictions

Basic feasibility check: solve the nominal power flow equalities
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Numerical experiments: instances with up to 9 buses

Uncertainty,

% of load
Model

Average

objective
Time, sec.

Constraint

violations, %

Max # violations,

per exper., PQ

Max # violations,

per exper., VI

case 6ww, 6 buses

1

Nominal 31.3 0.0 43.9 0 2

DCOPF - - - - -

SDP 31.4 28.4 22.1 0 2

Taylor 31.6 69.4 0.0 0 0

case 9, 9 buses

1

Nominal 53.0 0.0 0.7 0 2

DCOPF 53.2 9.1 0.0 0 0

SDP 53.0 22.5 100.0 0 2

Taylor 53.3 57.6 0.0 0 0

5

Nominal 53.2 0.0 35.7 0 2

DCOPF 53.5 13.8 0.0 0 0

SDP 53.2 30.5 100.0 0 3

Taylor 53.4 72.7 0.0 0 0

10

Nominal 53.5 0.0 43.9 0 2

DCOPF 54.4 12.6 0.1 1 0

SDP 53.6 23.8 87.5 0 3

Taylor 53.7 70.4 0.0 0 0

20

Nominal 54.9 0.0 48.5 1 5

DCOPF 55.5 12.1 3.4 1 0

SDP 55.0 29.4 99.8 1 6

Taylor 55.0 74.4 1.0 1 0

30

Nominal 57.1 0.0 51.3 1 6

DCOPF - - - - -

SDP 57.4 26.1 97.8 1 6

Taylor 57.2 68.1 7.1 1 2
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Numerical experiments: instances with 30 to 118 buses

Uncertainty,

% of load
Model

Average

objective
Time, sec.

Constraint

violations, %

Max # violations,

per exper., PQ

Max # violations,

per exper., VI

case 30, 30 buses

1

Nominal 6.1 0.1 100.0 0 2

DCOPF - - - - -

SDP 5.8 178.6 31.7 0 2

Taylor 5.9 177.2 1.7 0 2

case 57, 57 buses

1

Nominal 417.4 0.1 70.6 2 1

DCOPF 418.5 43.0 100.0 2 1

Taylor 426.8 467.2 0.0 0 0

case 118, 118 buses

1

Nominal 1296.7 0.2 99.5 9 0

DCOPF 1315.6 94.9 100.0 21 0

Taylor 1301.3 830.0 1.1 1 0
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Conclusions

Solved large-scale deterministic problems

Solved small and medium scale problems with uncertainty

Finds control solutions in short time for small to middle-sized
Matpower cases
Works best for low to moderate levels of uncertainty
Generalizes to adjustable robust polynomial problems

Ongoing: Solve small and medium scale problems with unit
commitment and AC constraints

combine sparsity and SDP relaxations in a branch and bound framework
Find reasonable gap in a short amount of time for small to middle-sized
Matpower cases
Generalize to MIQCQP
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Thank you!
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