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Adequacy Assessment of the Electrical Grid

Measures the ability of the electric power system to react to adverse uncertain
condition.

Member States wishing to introduce capacity mechanisms can do so if an adequacy
concern is identified in the ERAA study, a pan-European adequacy assessment for
up to 10 years ahead.

Due to the scale of the ERAA study, ERAA 2022 considered a reduced stochastic
problem with three scenarios.

To adress this issue [Ávi+23], Daniel A’vila introduced a decomposition algorithm
based on subgradient approximations.
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Stochastic Capacity Expansion Problem (CEP)

We formulate the Stochastic Capacity Expansion Problem as a two-stage stochastic
program.

min
x

c ′x + Eω [V(x , ω)]

s.t. 0 ≤ xn,g ≤ Xn,g (CEP)

The first stage determines the capacity expansion xn,g for each generator g ∈ G
The second stage solves the Economic Dispatch (ED).

Where V(x , ω) is the solution to (ED) in function of the expanded capacities x and the
scenario ω.
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Economic Dispatch (ED) variables

The scenarios ω ∈ Ω comprise of the realization of the following variables:

Solar power PVω (MW)

Wind power WPω (MW)

Loads Dω (MW)

The optimization variables are:

The power stored at each bus: vn,t,w
Power generation: pω (MW)

Power flow through line l : fn,l,ω (MW)
Load shedding lsω (MW)
Spillage sω (MW)
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Economic Dispatch (ED) model

min
y

q′yω (1)

s.t. pn,g ,t,ω + bdn,t,ω +
∑

l∈L(n)

fn,l ,t,ω + lsn,t,ω + PVn,t,ω +Wn,t,ω = (2)

= Dn,t,ω + snt.ω + bcn,t,ω

vn,t,ω = vn,t−1,ω + BCE · bcn,t,ω − BDE · bdn,t,ω + An,t,ω (3)

(vn,t,ω, bcn,t,ω, bdn,t,ω) ≤ (BV ,BC ,BD) (4)

pn,g ,t,ω ≤ pmax
n,g + xn,g

Lmin
n,l ≤ fn,l ,t,ω ≤ Lmax

n,l
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Literature Review - 1/2
In [Ávi+23], A’vila et Al, the time horizon is divided into K intervals:

{0, . . . , t1}, . . . , {tK−1 + 1, . . . , tK = T}.

Then, for each k , the economic dispatch restricted to the time steps T ≥ t ≥ tk is
considered.

Let Vk(x , vtk , ω) be the corresponding optimal value, it can be defined inductively as:

Vk(x , vtk , ω) = min
[
(1)

]tk+1−1

t=tk
+ Vk+1(x , vtk+1

, ω)

s.t.
[
(2)− (6)

]tk
tk−1+1

Where VK+1 := 0. Note that V1(x , ω) = V(x , ω).
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Literature Review - 2/3
Since each Vk is peacewise convex in x and vtk , it can be approximated by a collection
of supporting hyperplanes {πw

i ,k(x , vtk )} of each Vk :

V̂k(x , vtk , ω) = min
[
(1)

]tk+1−1

t=tk
+ θk+1,ω

s.t.
[
(2)− (6)

]tk
tk−1+1

θk+1,ω ≥ πw
i ,k(x , vt+1)

Then the relaxed capacity expansion problem, (CEP-A), is define as:

min
x

c ′x + Ew

[
V̂1(x ,w)

]
s.t. 0 ≤ xn,g ≤ Xn,g (CEP-A)

This can be solved efficiently with L-shaped or subgradient schemes.

Gabor Riccardi 19/06/24 8 / 25
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Then the relaxed capacity expansion problem, (CEP-A), is define as:

min
x

c ′x + Ew

[
V̂1(x ,w)

]
s.t. 0 ≤ xn,g ≤ Xn,g (CEP-A)

This can be solved efficiently with L-shaped or subgradient schemes.
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Literature review - 3/3 Algorithm description

Initialize: Provide a lower bound for Vk and an initial trial action x̂0

Solve CEP-A using current lower approximation V̂1 and obtaining new trial action x̂ i .

Forward step: Compute the current approximation V̂k(x , vtk , ω) for k = 1, . . . ,K and ∀ω

Backward step: from the dual of V̂k , compute a cut πω
i+1,k , for V̂k−1 for k = K , . . . , 1

Are there any new cuts?

Stop: x̂ i is optimal solutions for CEP

Yes

No
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Definition: The hypergraph associated
to a linear programming problem LP,
denoted by G = (N , E), is constructed
as follows:

The nodes N of G correspond to
the variables of the LP.

The hyperedges E of G correspond
to each set of variables that ap-
pears together in any constraint of
the LP.

Example of LP hypergraph.

Gabor Riccardi 19/06/24 10 / 25



Model relaxation description: Intermediate Economic Dispatches (ED-k)

ED-1

ED-2

ED-3

ED-4

ED-5

(ED) hypergraph representation.

We divide the time hori-
zon into K intervals:
{t0 := 0, . . . , t1},
{t1 + 1, . . . , t2},

. . .
{tK−1 + 1, . . . , tK = T}

We fix a priori the intermedi-
ate storage values vtk for k =
1, . . . ,K .

We refer to the (ED) problems re-
stricted to each time interval as
(ED-k)

The corresponding optimal values
are Vk(x, vtk , vtk+1,ω)
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Observation

V(x , ω) = min
{vtk }

K
k=1

K−1∑
k=0

Vk(x , vtk , vtk+1, ω) (5)

Gabor Riccardi 19/06/24 12 / 25



Model relaxation description: Lower Approximation of (ED)

Since each function Vk is piecewise linear convex in x , vtK , vtK+1
, it can be approximated

by a collection of supporting hyperplanes {πw
i ,k(x , vtk , vtk+1

)} of each Vk .

An approximation of (ED) is given by:

V̂(x , ω) = min
{vtk }

K
k=1

K∑
k=0

V̂k(x , vtk , vtk+1
) =

= min
{vtk }

K
k=1

K∑
k=0

θωk (ISP)

s.t. θωk ≥ πω
i ,k(x , vtk , vtk+1

) ∀i , k

We refer to this problem as the Intermediate Storage Problem (ISP)
(I know, very original)
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Model description: Relaxed Capacity Expansion(CEP-R)

min
x

c ′x + Eω [V(x , ω)]

s.t. 0 ≤ xn,g ≤ Xn,g (CEP)

min
x

c ′x + Ew

[
V̂(x ,w)

]
s.t. 0 ≤ xn,g ≤ Xn,g (CEP-R)

Since calculating V̂ is straightforward, solving (CEP-R) can be done efficiently with L-
shaped or subgradient schemes.
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Algorithm

Input

R-CEP

ISP(ω) ∀ω ∈ Ω

ED-1 ED-2 . . . ED-K

Compute new cuts for Vk ∀k •

x̂ i is CEP-optimal

x̂ i

vt0 ,vt1
vt1 ,vt2 vtk−1

,vtk

Dual multipliers

if new cuts

Add cuts

Gabor Riccardi 19/06/24 15 / 25



Convergence results - 1/5

Since (CEP − R) ≤ (CEP) if a (CEP − R) optimal solution is (CEP) feasible then
it’s also (CEP)-optimal.

Remark 1: It is sufficient to prove that after a finite number of steps (i) of the algorithm
we have:

V̂(x̂ i , ω) = V(x̂ i , ω) for all ω ∈ Ω (6)
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Convergence results - 2/5

Observation
After a finite number of iterations no new cuts are found for Vk .

Proof.

#{p | p is a normal vector of a supporting hyperplane of Vk} ≤
#{dual solutions p = q′B−1 of (ED-k) for varying x , vtk , vtk+1

} ≤
#{basis matrices of (ED-k)} < ∞

(7)

After a finite number of steps:

new cut: c̄(x , v) = p′(x , v) + b

an old cut: π(x , v) = p′(x , v) + b̄
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Convergence results - 3/5

x

y
Vk

π

c̄

Since both are supporting hyperplanes it follows that b = b̄
(and therefore c̄ is not a new cut).
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Convergence results - 4/5

Observation
If after the i-iteration no new cuts are added for some i and k then
V̂k(x̂

i , v̂k , v̂k+1) = Vk(x̂
i , v̂k , v̂k+1).

Proof.
Let c̄ωk (x , vtk ) := p′(x − x̂ i , vtk − v̂tk ) + Vk(x̂

i , v̂tk ) be the new cut found after the i-th
iteration.
Since c̄ is not a new cut we have c̄(x , vtk ) ≤ V̂k(x , vtk ). We have thus

Vk(x̂
i , v̂tk ) ≥ V̂k(x̂

i , v̂tk ) ≥ c̄(x̂ i , v̂tk ) = Vk(x̂
i , v̂tk )

which concludes the proof.
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i , v̂tk ) ≥ c̄(x̂ i , v̂tk ) = Vk(x̂
i , v̂tk )

which concludes the proof.
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Convergence results - 5/5

In conclusion, we have V̂k(x̂
i , vtk , vtk+1

, ω) = Vk(x̂
i , vtk , vtk+1

, ω) for all ω, k.

Thus V̂(x̂ i , ω) = V(x̂ i , ω).

Proposition

The algorithm converges after a finite number of iterations and x̂ i is an optimal
solution for (CEP).
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Initial results - 1/2

We implemented the algorithm on the
following network, consisting different
kinds of storage units, solar, gas and
wind power for a time horizon of 5
weeks and time steps of one hour.

Network layout
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Initial results - 2/2
In this instance the (not parallelized) algorithm converges to the optimal solutions in 12
iterations and in 0.46 seconds. Benders’ algorithm converged in 0.44 seconds.

Objective value of (ISP) for each iteration.
Gabor Riccardi 19/06/24 21 / 25



Conclusions.

The specific structure of the intertemporal constraints makes it possible do develop
tailored optimization algorithms for (CEP).

The algorithm is analogous to a three stage bender decomposition. (And I think
the work by Filippo Pecci presented yesterday.)
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Future Work.

We are currently implementing this and other stochastic methods within the Pypsa
[BHS18] framework using the Linopy [Hof23] modeling package in Python.

Supporting hyperplanes for ˆVk(x , vtk , ω) could also be used for different k ′ ̸= k and
ω′ ̸= ω, possibly decreasing the overall number of iterations to achieve convergence.

In general: equivalent LP formulations give different corresponding Hypergraph
with different degrees of parallelizability.
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Thank you for your attention.

gabor.riccardi01@universitadipavia.it

https://www.compopt.it
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Power Grid Optimization

Optimal Power Flow (OPF) [Bie+20]

AC OPF: exact physical model
Security-Constrained OPF (SCOPF) – Includes contingencies to guarantee sys-
tem security under failures.
DC OPF and other linearized models [BM14]
other relaxations.

Unit Commitment – Determines on/off status of power units, ignoring grid con-
straints.

Economic Dispatch (ED) – Minimizes generation cost, ignoring grid constraints.
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Capacity expansion problem: Based on Economic Dispatch models with added flow
balance at bus nodes and various scenarios.
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