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Introduction

Introduction

The upcoming energy systems showcase a need for flexibility.

This need stems from increased (intermittent) generation

Measuring this need requires representing uncertainty and constraints.

Typically convexity or favourable structure is lost.
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Introduction

Motivation

For “energy transition" studies there is a need to compute a “good" energy
mix.

This good “mix" serves as the basis for the operational evaluation and
possibly policy “illustration";

There is a question of geographical scale: Europe, NUTS0 - maybe
NUTS2 ?
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Introduction

Motivation II

So “what is the cost optimal mix?"

This is an optimization problem, but it involves substantial difficulties.

In particular one needs a “good way" to compute the operational cost at
a given investment decision.
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Some structure

Layers

For a given investment strategy, evaluating the operational cost has typi-
cally two layers:

The first layer is that of “seasonal storage valuation": computing the cost-
optimal strategy of long-term storage - classically hydro

The second layer - underneath seasonal storage - is that of unit-commitment.

Investment is thus a stacked three layer optimization problem.
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Some structure

Difficulties

Each layer is already challenging on its own - exacerbated by the geo-
graphical scale.

The seasonal storage layer is typically a multi-stage stochastic program

Unit-commitment problems can be challenging too, especially with a de-
tailed model.
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Some structure

Schematic problem

with κ = (κ1, ..., κn) the capacity vector : κi being the investment in tech-
nology i ,

we face:
min
κ∈K

F (κ) + O(κ).

The deterministic operational cost would look like:

O(κ) := min
x

n∑
i=1

κi∑
j=1

ci(xi,j)

s.t. xi,j ∈ Xi

n∑
i=1

κi∑
j=1

Aixi,j ≥ d
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Primals and Duals

Primal view

In the presence of convexity: Xi convex, ci convex, the inner operational
problem is such that the synchronized solution is also optimal:

xsyn
i,j =

1
κi

κi∑
j=1

x∗
i,j .

Under these assumptions the operational cost is thus also:

O(κ) := min
x

n∑
i=1

κici(xi)

s.t. xi ∈ Xi

n∑
i=1

κiAixi ≥ d ,

computationally much less involved.

of course convexity is not present: let us look at the dual
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Primals and Duals

Dual view

If we dualize the power balance equation we get the Lagrangian dual
problem:

O(κ) = max
λ≥0

θ(κ, λ),

with

θ(κ, λ) = λTd +
n∑

i=1

κi

(
min
xi∈Xi

ci(xi)− λTAixi

)

it is well known that this Lagrangian dual is also the Lagrangian dual of
some appropriately convexified primal problem.
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Primals and Duals

Dual view II

This dual of the convexified primal is:

θ(κ, λ) = λTd −
n∑

i=1

κi(cX
i )

∗(AT
i λ),

with cX
i = ci + 1IXi and (cX

i )
∗ being Fenchel’s conjugate.

In the Lagrangian dual we recognize once more the favourable multiplica-
tive structure with respect to κi .

It is furthermore known that Lagrangian duals compute effectively.
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Surrogates

The surrogate

We thus suggest to replace the investment problem with the convexified
version:

min
κ∈K

F (κ) + O(κ).

This surrogate has the advantage of being automatically computed by a
well-established computational procedure

The same computational procedure allows for parallelization, hot-starting
and many advanced computational “tricks".
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Surrogates

Bounding the gap

We can establish:
Theorem (Bounding the approximation gap)

With O : K → R the operational cost map and O, the “Lagrangian dual" surrogate. Assume moreover that

for each i = 1, ..., n, the sets Xi are compact ;

for each i = 1, ..., n, the cost functions ci are continuous.

the map c0(d − ·) is convex continuously differentiable on (an open set containing) the compact set Co(Y ) (the convex hull of Y )

where Y :=
∑n

i=1
∑κi

j=1 Yi is the Minkowski sum of the sets Yi := Ai Xi . Moreover, c0 has L0 -Lipschitz gradient w.r.t. the

Euclidean norm ∥ · ∥2 .

Then, for any κ ∈ K, the following bound on the duality gap can be exhibited

O(κ) − O(κ) ≤
L0

2
(T + 1) max

1≤i≤n
∆2

i , (1)

where ∆i is the diameter of the compact set

Ki := {wi = (yi , zi ) ∈ RT × R | yi = Ai xi , zi = ci (xi ) , with xi ∈ Xi}. (2)
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Surrogates

Bounding the gap II

With S(κ) := F (κ) + O(κ) and S(κ) := F (κ) + O(κ)

Corollary (Bounding the relative error on system costs)

Suppose moreover that the fixed costs are linear and separable in each tech-
nology i.e., F (κ) =

∑n
i=1 κi fi for some fi ∈ R+. Then, for any κ ∈ K, the

relative error on system costs is bounded as follows

0 ≤ S(κ)− S(κ)

S(κ)
≤ L0

2
(T + 1)

max1≤i≤n ∆
2
i∑n

i=1 κi
(
fi + c̄i(κ)

) , (3)

where c̄i(κ) denotes the average optimal operational cost for technology i, i.e.
c̄i(κ) =

1
κi

∑κi
j=1 ci(x∗

i,j(κ)) with x∗
i,j(κ) being an optimal operational program for

the given investment vector κ ∈ K.
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Surrogates

Particularizing the result

With Pmax
i the maximum power for technology i , we can make the estimate

precise:

0 ≤ S(κ)− S(κ)

S(κ)
≤ (1 + L2)L0

(T max
1≤i≤n

Pmax
i )2∑n

i=1 κi(fi + c̄i(κ))
. (4)

So if we invest in many “small" units for large systems, the worst case
“gap" - is theoretically small.

In practice ofcourse, [Frangioni et al.(2011)] show that the gap typically
does not exceed 0.5 % anyway.
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Some computations

A case

We pick an 11 zone case from the plan4res H2020 Eu funded project1

The data set is a stochastic mid-term problem with 78 weekly stages,
each at hourly granularity

The problem has 7 reservoirs and more than a 1000 “generators"

1https://www.plan4res.eu/ grant : 773897
19 / 39

https://www.plan4res.eu/


Introduction Tools Efficient investment Convexification and the intermediate level Summary

Some computations

Results

The problem is solved through the SMS++ computer code and with the
StOpt SDDP solver in roughly 2 hours.

Volumetric results for the reservoir look as follows:
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Seasonal storage

Structure of time

We dispose of a larger time horizon T , further split into smaller time peri-
ods: subperiods. The latter represents a further subdivision of time.

Each subperiod represents a stage. Each stage is impacted by uncer-
tainty on load, inflows, renewable generation, (outages)
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Seasonal storage

Structure of storage

For each stage s and cascaded system c to consider we deal with the
following dynamics:

vc,s+ = vc,s + A1f:,s + A2ξs,

where A1,A2 are appropriate matrices, f:,s is the vector of flow rates and
ξs the inflow process.
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Seasonal storage

Structure of program

At a high level the optimization problem to solve appears as:

min E

(∑
s

Cs(f:,s)

)
s.t. fc,s ∈ Mc ∀c ∀s

fc,s ⪯ σ(ξ[s]) ∀s

vc,s+ = vc,s + A1f:,s + A2ξs, ∀c,

Here Cs is the operational cost attached with flow rate f:,s for all cascading
systems.
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Seasonal storage

Transition problem: unit-commitment

Now the transition problem defines the cost function.

The transition problem is most naturally modelled as a unit-commitment
problem.

However we would like to be robust to new “sub-models" too.

Ad-hoc convexification is unlikely to be “reliable" in multiple meanings of
the word.
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Seasonal storage

Structure of cost

The cost would typically be of the following form:

Cs(f:,s) :=min
∑
i∈I

Ĉ i(p:,i),

s.t. p:,i ∈ Mi , i ∈ I

(p:,c , fc,s, vc) ∈ Mc , ∀c∑
c

p:,c +
∑
i∈I

p:,i = D

Here Mi represents the feasible set of generation for various units.

The cost functions Ĉ i can reasonably be assumed convex, as can Mc ,
but this is not the case for Mi .
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Seasonal storage

The Lagrangian

By using the Lagrangian dual for solving the problem defining Cs

we obtain an efficient solution procedure

we solve an appropriate convexification, i.e.,

C̄s(f:,s) :=min
∑
i∈I

Ĉ i(p:,i),

s.t. p:,i ∈ CoMi , i ∈ I

(p:,c , fc,s, vc) ∈ Mc , ∀c∑
c

p:,c +
∑
i∈I

p:,i = D

(if the objective function is not linear - we solve a slightly different convex-
ification - harder to make primally explicit)

we pave the way for being able to use efficient stochastic algorithms for
the upper layer
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Seasonal storage

Recursion

The problem admits the following recursion

ν̄s(v:,s, ξs) =min C̄s(f:,s) + νs+(v:,s+(ξ[s])

s.t.vc,s+ = vc,s + A1f:,s + A2ξs ∀c

fc,s ∈ Mc , ∀c.

and
νs+(v:,s+(ξ[s]) := E

(
—νs+(v:,s+ , ξs+)|σ(ξ[s])

)
.

When using C̄s instead of Cs, the value functions become convex.

We can thus employ the SDDP algorithm to compute approximations of
these value functions.
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Some results

Seasonal Storage Valuation – some results I

SDDPSolver requires convex problem: continuous relaxation of any for-
mulation or Lagrangian dual

Brazilian hydro-heavy system:
53 hydro (3 cascade), 98
thermal (coal, gas, nuclear),
stochastic inflows (20 scenar-
ios)

Out-of-sample simulation:
1000 scenarios

Cont. relax. Lag. relax.
Cost: Avg. / Std. 4.6023e+9 / 1.3608e+9 4.5860e+9 / 1.3556e+9

Only 0.4% better, but just changing a few lines in the Configuration
(Lagrangian about 4 times slower, but can be improved) 29 / 39
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Some results

Seasonal Storage Valuation – some results II

Single node (Switzerland)

60 stages (1+ year), 37 scenarios, 168 time instants (weekly UC)

Units: 3 intermittent, 5 thermals, 1 hydro

Out-of-sample simulation: all 37 scenarios to integer optimality

Cont. relax. Lag. relax.
Cost: Avg. / Std. 1.3165e+11 / 2.194e+10 1.2644e+11 / 2.167e+10

Time: 25m 7h30m

Much longer, but:

simulation cost ≈ 30m per scenario, largely dominant

save 4% just changing a few lines in the configuration

LR time can be improved (ParallelBundleSolver not used)
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Some results

Seasonal Storage Valuation – some results III

A different single node (France)

60 stages (1+ year), 37 scenarios, 168 time instants (weekly UC)

83 thermals, 3 intermittent, 2 batteries, 1 hydro

Out-of-sample simulation: all 37 scenarios to integer optimality

Cont. relax. Lag. relax.
Cost: Avg. / Std. 3.951e+11 / 1.608e+11 3.459e+11 / 8.903e+10

Time: 5h43m 7h54m

Time not so bad (and 3h20m on average simulation per scenario)
using ParallelBundleSolver with 5 threads per scenario

That’s 14% just changing a few lines in the configuration

Starts happening regularly enough (and lower variance) to be believable
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Some investment computations

Energy System Investment Problem – some results I

Simplified version: solve SDDP only once, run optimization with fixed
value-of-water function + simulation (SDDPGreedySolver)

EdF EU scenario: 11 nodes (France, Germany, Italy, Switzerland, Eastern
Europe, Benelux, Iberia, Britain, Balkans, Baltics, Scandinavia), 20 lines

Units: 1183 battery, 7 hydro, 518 thermal, 40 intermittent

78 weeks hourly (168h), 37 scenarios (demand, inflow, RES generation)

Investments: 3 thermal units + 2 transmission lines.

Average cost: original (operational) 6.510e+12
optimized (investment + operational) 5.643e+12

This is ≈ 1 Trillion Euro, 15%

Running time: ??? hours for value-of-water functions (EdF provided)
+ 10 hours (4 scenarios in parallel + ParallelBundleSolver with 6
threads) for the investment problem
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Some investment computations

Energy System Investment Problem – some results II

Simplified version (fixed value-of-water with continuous relaxation)

Same 11 nodes, 19 lines

Less units: 7 hydros, 44 thermals, 24 batteries, and 42 intermittent

More investments: 82 units + 19 transmission lines.

78 weeks hourly (168h), 37 scenarios (demand, inflow, RES generation)

Average cost: original (operational) 3.312e+12
optimized (investment + operational) 1.397e+12

This is ≈ 2 Trillion Euro, 137%

Running time: 48 hours for value-of-water functions (2 nodes = 96 cores)
+ 5h 20m to solve the investment problem (1 nodes = 48 core)
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Some investment computations

Energy System Investment Problem

The true version: value-of-water recomputed anew for each investment

Still simplified: only one scenario (long way to go, but
TwoStageStochasticBlock and BendersDecompositionSolver
currently under active development, we’ll get there eventually)

EU scenario: 14 nodes (France, Germany, Italy, Switzerland, Eastern
EU, Benelux, Iberia, Britain, Balkans, Baltics, Denmark, Finland, Sweden,
Norway), 28 lines, 62 thermals, 54 intermittent, 8 hydros, 39 batteries

78 weeks hourly (168h), 37 scenarios (demand, inflow, RES generation)

Investments: 99 units of all kinds + all transmission lines

Two dedicated top-level servers with (each) 2 AMD Epyc 9654 (2.4Ghz,
96 cores, 192 threads, 384MB cache) with 1.5TB RAM (DDR5-4800)

Requires extensive support for checkpointing and restarts
(but less than on CINECA machines that had 24h time limit)
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Some investment computations

Energy System Investment Problem: first steps

Huge problem, so three steps approach
solve the Seasonal Storage Valuation with initial system (no investment)
solve Energy System Investment Problem with fixed value-of-water
function out of SDDP (simulation-based optimization)
improve investment by dynamically recomputing value-of-water at
every iteration

Original system cost: (operational) 3.467e+12
Optimized cost: operational 4.505e+11 + investment 2.284e+11 =

total 6.789e+11

Half an order of magnitude saving (suspect most value of lost load),
511% better investing on just 4 lines and 10 hydrogen power plants

Running time: 15h18m for future cost function of the original system,
5h18m simulation-based investment problem (74 threads max)
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Some investment computations

The Little-Big Kahuna results

Starting from previous solution, optimize with variable value-of-water

iteration 0: op. 4.505e+11 + inv. 2.284e+11 = total 6.789e+11 (1.8h)
(very sparse investment decision)
iteration 1: op. 6.670+10 + inv. 5.635e+12 = total 5.702e+12 (22h)
(almost completely dense investment decision)
iteration 2: op. 1.505e+12 + inv. 2.221e+11 = total 1.727e+12 (21h)
(less dense investment decision)
iteration 3: op. 2.286e+11 + inv. 7.263e+11 = total 9.549e+11 (20h)
(less dense investment decision)

Already a factor of 2 better than original system (no investment)

Using LPs in SDDP (many numerical issues), Lagrangian will be better
and will be able to use way more threads (ParallelBundleSolver)

Will improve over the fixed value-of-water, just not there as yet

But we are getting there, thanks to SMS++
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Summary

In this talk we discussed the question of investment in power systems.

We have shown how we can leverage the convexifying effect of the La-
grangian to balance accuracy and computability: both in investment and
SDDP.
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