0000 000	00000 00	0000000 000 00000	

On investment in power systems

W. van Ackooij1

A. Frangioni, R. Lobato, N. Oudjane

¹OSIRIS Department EDF R&D 7 Boulevard Gaspard Monge; 9120 Palaiseau ; France

Bergamo, 2024

Introduction 0000 000	Tools 0000	Efficient investment 00000 00	Convexification and the intermediate level 00000000 000 00000	Summary OO

Outline

- 1 Introduction
 - Introduction
 - Some structure

2 Tools

Primals and Duals

3 Efficient investment

- Surrogates
- Some computations

4 Convexification and the intermediate level

- Seasonal storage
- Some results
- Some investment computations

\[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[

Introduction ●○○○ ○○○	Tools 0000	Efficient investment 00000 00	Convexification and the intermediate level	Summary 00
Introduction				

- Introduction
- Some structure
- 2 Tool

Primals and Duals

- 3 Efficient investment
 - Surrogates
 - Some computations
- 4 Convexification and the intermediate level
 - Seasonal storage
 - Some results
 - Some investment computations

Introduction ○●○○ ○○○	Tools 0000	Efficient investment 00000 00	Convexification and the intermediate level	Summary 00
Introduction				
Introductio	on			

- The upcoming energy systems showcase a need for flexibility.
- This need stems from increased (intermittent) generation
- Measuring this need requires representing uncertainty and constraints.
- Typically convexity or favourable structure is lost.

Introduction ○○●○ ○○○	Tools 0000	Efficient investment 00000 00	Convexification and the intermediate level	Summary OO
Introduction				
Motivation				

- For "energy transition" studies there is a need to compute a "good" energy mix.
- This good "mix" serves as the basis for the operational evaluation and possibly policy "illustration";
- There is a question of geographical scale: Europe, NUTS0 maybe NUTS2 ?

Introduction ○○○ ○○○	Tools 0000	Efficient investment 00000 00	Convexification and the intermediate level	Summary OO
Introduction				
Motivatio	n II			

- So "what is the cost optimal mix?"
- This is an optimization problem, but it involves substantial difficulties.
- In particular one needs a "good way" to compute the operational cost at a given investment decision.

Introduction ○○○○ ●○○	Tools 0000	Efficient investment 00000 00	Convexification and the intermediate level	Summary 00
Some structure				
Layers				

- For a given investment strategy, evaluating the operational cost has typically two layers:
- The first layer is that of "seasonal storage valuation": computing the costoptimal strategy of long-term storage - classically hydro
- The second layer underneath seasonal storage is that of unit-commitment.
- Investment is thus a stacked three layer optimization problem.

Introduction ○○○○ ○●○	Tools 0000	Efficient investment 00000 00	Convexification and the intermediate level	Summary 00
Some structure				
Difficulties				

- Each layer is already challenging on its own exacerbated by the geographical scale.
- The seasonal storage layer is typically a multi-stage stochastic program
- Unit-commitment problems can be challenging too, especially with a detailed model.

0000 0000 00000 00	Introduction			
	0000 000	00000 00	0000000 000 00000	
Some structure	Some structure			

Schematic problem

- with κ = (κ₁,..., κ_n) the capacity vector : κ_i being the investment in technology *i*,
- we face:

 $\min_{\kappa\in\mathcal{K}}F(\kappa)+O(\kappa).$

The deterministic operational cost would look like:

$$O(\kappa) := \min_{x} \qquad \sum_{i=1}^{n} \sum_{j=1}^{\kappa_{i}} c_{i}(x_{i,j})$$

s.t. $x_{i,j} \in X_{i}$
 $\sum_{i=1}^{n} \sum_{j=1}^{\kappa_{i}} A_{i}x_{i,j} \ge d$

Introduction 0000 000	Tools ●000	Efficient investment 00000 00	Convexification and the intermediate level	Summary OO
Primals and Duals				

- Introduction
- Some structure
- 2 ToolsPrimals and Duals
- 3 Efficient investment
 - Surrogates
 - Some computations
- 4 Convexification and the intermediate level
 - Seasonal storage
 - Some results
 - Some investment computations

Introduction 0000 000	Tools O●OO	Efficient investment 00000 00	Convexification and the intermediate level 00000000 0000 00000	Summary 00
Primals and Duals				

Primal view

■ In the presence of convexity: *X_i* convex, *c_i* convex, the inner operational problem is such that the synchronized solution is also optimal:

$$x_{i,j}^{\mathrm{syn}} = rac{1}{\kappa_i} \sum_{j=1}^{\kappa_i} x_{i,j}^*.$$

Under these assumptions the operational cost is thus also:

$$O(\kappa) := \min_{x} \quad \sum_{i=1}^{n} \kappa_{i} c_{i}(x_{i})$$

s.t. $x_{i} \in X_{i}$
 $\sum_{i=1}^{n} \kappa_{i} A_{i} x_{i} \ge d,$

computationally much less involved.

of course convexity is not present: let us look at the dual

Introduction 0000 000	Tools ○○●○	Efficient investment	Convexification and the intermediate level	Summary OO
Primals and Duals				

If we dualize the power balance equation we get the Lagrangian dual problem:

$$\underline{O}(\kappa) = \max_{\lambda \ge 0} \theta(\kappa, \lambda),$$

with

$$heta(\kappa,\lambda) = \lambda^{\mathsf{T}} d + \sum_{i=1}^{n} \kappa_i \left(\min_{x_i \in X_i} c_i(x_i) - \lambda^{\mathsf{T}} A_i x_i \right)$$

it is well known that this Lagrangian dual is also the Lagrangian dual of some appropriately convexified primal problem.

Introduction 0000 000	Tools ○○○●	Efficient investment 00000 00	Convexification and the intermediate level	Summary 00
Primals and Duals				
Dual view	II			

This dual of the convexified primal is:

$$\theta(\kappa, \lambda) = \lambda^{\mathsf{T}} \boldsymbol{d} - \sum_{i=1}^{n} \kappa_i (\boldsymbol{c}_i^X)^* (\boldsymbol{A}_i^{\mathsf{T}} \lambda),$$

with $c_i^X = c_i + \mathbf{1}_{X_i}$ and $(c_i^X)^*$ being Fenchel's conjugate.

- In the Lagrangian dual we recognize once more the favourable multiplicative structure with respect to κ_i.
- It is furthermore known that Lagrangian duals compute effectively.

Introduction 0000 000	Tools 0000	Efficient investment ●0000 ○0	Convexification and the intermediate level	Summary OO
Surrogates				

- Introduction
- Some structure

Primals and Duals

- 3 Efficient investment
 - Surrogates
 - Some computations
- 4 Convexification and the intermediate level
 - Seasonal storage
 - Some results
 - Some investment computations

Introduction 0000 000	Tools 0000	Efficient investment O●OOO ○○	Convexification and the intermediate level	Summary OO
Surrogates				
The surro	oate			

We thus suggest to replace the investment problem with the convexified version:

 $\min_{\kappa\in\mathcal{K}}F(\kappa)+\underline{O}(\kappa).$

- This surrogate has the advantage of being automatically computed by a well-established computational procedure
- The same computational procedure allows for parallelization, hot-starting and many advanced computational "tricks".

	Efficient investment		
0000 000	00000 00	00000000 000 00000	
Surrogates			

Bounding the gap

We can establish:

Theorem (Bounding the approximation gap)

With $O: \mathcal{K} \to \mathbb{R}$ the operational cost map and \underline{O} , the "Lagrangian dual" surrogate. Assume moreover that

- for each i = 1, ..., n, the sets X_i are compact ;
- for each i = 1, ..., n, the cost functions c_i are continuous.
- the map $c_0(d \cdot)$ is convex continuously differentiable on (an open set containing) the compact set $C_0(Y)$ (the convex hull of Y) where $Y := \sum_{i=1}^{n} \sum_{j=1}^{\kappa_i} Y_j$ is the Minkowski sum of the sets $Y_j := A_j X_j$. Moreover, c_0 has L_0 -Lipschitz gradient w.r.t. the Euclidean norm $\|\cdot\|_2$.

Then, for any $\kappa \in \mathcal{K}$, the following bound on the duality gap can be exhibited

$$O(\kappa) - \underline{O}(\kappa) \le \frac{L_0}{2} (T+1) \max_{1 \le i \le n} \Delta_i^2, \tag{1}$$

where Δ_i is the diameter of the compact set

$$K_{i} := \{ w_{i} = (y_{i}, z_{i}) \in \mathbb{R}^{T} \times \mathbb{R} \mid y_{i} = A_{i} x_{i}, z_{i} = c_{i}(x_{i}), \text{ with } x_{i} \in X_{i} \}.$$
(2)

Introduction 0000 000	Tools 0000	Efficient investment OOO●O OO	Convexification and the intermediate level	Summary OO
Surrogates				

Bounding the gap II

With
$$S(\kappa) := F(\kappa) + O(\kappa)$$
 and $\underline{S}(\kappa) := F(\kappa) + \underline{O}(\kappa)$

Corollary (Bounding the relative error on system costs)

Suppose moreover that the fixed costs are linear and separable in each technology i.e., $F(\kappa) = \sum_{i=1}^{n} \kappa_i f_i$ for some $f_i \in \mathbb{R}^+$. Then, for any $\kappa \in \mathcal{K}$, the relative error on system costs is bounded as follows

$$0 \leq \frac{S(\kappa) - \underline{S}(\kappa)}{S(\kappa)} \leq \frac{L_0}{2} (T+1) \frac{\max_{1 \leq i \leq n} \Delta_i^2}{\sum_{i=1}^n \kappa_i (f_i + \overline{c}_i(\kappa))},$$
(3)

where $\bar{c}_i(\kappa)$ denotes the average optimal operational cost for technology *i*, *i.e.* $\bar{c}_i(\kappa) = \frac{1}{\kappa_i} \sum_{j=1}^{\kappa_i} c_i(x_{i,j}^*(\kappa))$ with $x_{i,j}^*(\kappa)$ being an optimal operational program for the given investment vector $\kappa \in \mathcal{K}$.

Introduction 0000 000	Tools 0000	Efficient investment OOOO● OO	Convexification and the intermediate level 00000000 000 00000	Summary OO
Surrogates				

Particularizing the result

With P^{max} the maximum power for technology *i*, we can make the estimate precise:

$$0 \leq \frac{S(\kappa) - \underline{S}(\kappa)}{S(\kappa)} \leq (1 + L^2) L_0 \frac{\left(T \max_{1 \leq i \leq n} P_i^{\max}\right)^2}{\sum_{i=1}^n \kappa_i(f_i + \overline{c}_i(\kappa))}.$$
 (4)

- So if we invest in many "small" units for large systems, the worst case "gap" - is theoretically small.
- In practice ofcourse, [Frangioni et al.(2011)] show that the gap typically does not exceed 0.5 % anyway.

Introduction 0000 000	Tools 0000	Efficient investment ○○○○○ ●○	Convexification and the intermediate level	Summary 00
Some computations				

A case

- We pick an 11 zone case from the plan4res H2020 Eu funded project¹
- The data set is a stochastic mid-term problem with 78 weekly stages, each at hourly granularity
- The problem has 7 reservoirs and more than a 1000 "generators"

¹https://www.plan4res.eu/grant:773897

< 口 > < 同

Introduction 0000 000	Tools 0000	Efficient investment ○○○○○ ○●	Convexification and the intermediate level	Summary OO
Some computations				
Results				

- The problem is solved through the SMS++ computer code and with the StOpt SDDP solver in roughly 2 hours.
- Volumetric results for the reservoir look as follows:

Introduction 0000 000	Tools 0000	Efficient investment 00000 00	Convexification and the intermediate level ●0000000 000 00000	Summary 00
Seasonal storage				

- Introduction
- Some structure
- 2 Too

Primals and Duals

- 3 Efficient investment
 - Surrogates
 - Some computations

4 Convexification and the intermediate level

- Seasonal storage
- Some results
- Some investment computations

Introduction 0000 000	Tools 0000	Efficient investment 00000 00	Convexification and the intermediate level ○●○○○○○○ ○○○○	Summary OO
Seasonal storage				
Structure	of time			

- We dispose of a larger time horizon *T*, further split into smaller time periods: subperiods. The latter represents a further subdivision of time.
- Each subperiod represents a stage. Each stage is impacted by uncertainty on load, inflows, renewable generation, (outages)

		Convexification and the intermediate level	
0000 000	00000 00	0000000 000 00000	
Seasonal storage			

Structure of storage

■ For each stage *s* and cascaded system *c* to consider we deal with the following dynamics:

$$\mathbf{v}_{c,s^+} = \mathbf{v}_{c,s} + \mathbf{A}^1 f_{:,s} + \mathbf{A}^2 \xi_s,$$

where A^1, A^2 are appropriate matrices, $f_{:,s}$ is the vector of flow rates and ξ_s the inflow process.

Introduction	Tools 0000	Efficient investment	Convexification and the intermediate level	Summary 00
Seasonal storage			00000	

Structure of program

At a high level the optimization problem to solve appears as:

$$\begin{array}{ll} \min & \mathbb{E}\left(\sum_{s} C_{s}(f_{:,s})\right) \\ \text{s.t.} & f_{c,s} \in \mathfrak{M}_{c} \; \forall c \; \forall s \\ & f_{c,s} \preceq \sigma(\xi_{[s]}) \; \forall s \\ & v_{c,s^{+}} = v_{c,s} + A^{1}f_{:,s} + A^{2}\xi_{s}, \; \forall c, \end{array}$$

• Here C_s is the operational cost attached with flow rate $f_{:,s}$ for all cascading systems.

Introd	
000	0
000	

iols 000 Efficient investment

Convexification and the intermediate level

Summary 00

Seasonal storage

Transition problem: unit-commitment

- Now the transition problem defines the cost function.
- The transition problem is most naturally modelled as a unit-commitment problem.
- However we would like to be robust to new "sub-models" too.
- Ad-hoc convexification is unlikely to be "reliable" in multiple meanings of the word.

Introduction 0000 000	Tools 0000	Efficient investment 00000 00	Convexification and the intermediate level	Summary 00
Seasonal storage				

Structure of cost

The cost would typically be of the following form:

$$C_{s}(f_{:,s}) := \min \sum_{i \in I} \hat{C}^{i}(\boldsymbol{p}_{:,i}),$$

s.t. $\boldsymbol{p}_{:,i} \in \mathfrak{M}_{i}, i \in I$
 $(\boldsymbol{p}_{:,c}, f_{c,s}, v_{c}) \in \mathfrak{M}_{c}, \forall c$
 $\sum_{c} \boldsymbol{p}_{:,c} + \sum_{i \in I} \boldsymbol{p}_{:,i} = D$

• Here \mathfrak{M}_i represents the feasible set of generation for various units.

■ The cost functions \hat{C}^i can reasonably be assumed convex, as can \mathfrak{M}_c , but this is not the case for \mathfrak{M}_i .

Introduction 0000 000	Tools 0000	Efficient investment	Convexification and the intermediate level ○○○○○○●○ ○○○○	Summary OO
Seasonal storage				

The Lagrangian

By using the Lagrangian dual for solving the problem defining C_s

- we obtain an efficient solution procedure
- we solve an appropriate convexification, i.e.,

$$\begin{split} \bar{\mathcal{C}}_{s}(f_{:,s}) &:= \min \quad \sum_{i \in I} \hat{\mathcal{C}}^{i}(\mathcal{p}_{:,i}), \\ \text{s.t.} \quad \mathcal{p}_{:,i} \in \operatorname{Co} \mathfrak{M}_{i}, i \in I \\ (\mathcal{p}_{:,c}, f_{c,s}, v_{c}) \in \mathfrak{M}_{c}, \forall c \\ \sum_{c} \mathcal{p}_{:,c} + \sum_{i \in I} \mathcal{p}_{:,i} = D \end{split}$$

- (if the objective function is not linear we solve a slightly different convexification - harder to make primally explicit)
- we pave the way for being able to use efficient stochastic algorithms for the upper layer

Introduction 0000 000	Tools 0000	Efficient investment 00000 00	Convexification and the intermediate level ○○○○○● ○○○○	Summary 00
Seasonal storage				
Recursion				

The problem admits the following recursion

$$\begin{split} \bar{\nu}_{s}(v_{:,s},\xi_{s}) &= \min \bar{C}_{s}(f_{:,s}) + \nu_{s^{+}}(v_{:,s^{+}}(\xi_{[s]}) \\ \text{s.t.} v_{c,s^{+}} &= v_{c,s} + A^{1}f_{:,s} + A^{2}\xi_{s} \ \forall c \\ f_{c,s} \in \mathfrak{M}_{c}, \ \forall c. \end{split}$$

and

$$\nu_{\mathcal{S}^+}(\mathbf{V}_{:,\mathcal{S}^+}(\xi_{[\mathcal{S}]}) := \mathbb{E}\left(\underline{\nu_{\mathcal{S}^+}}(\mathbf{V}_{:,\mathcal{S}^+},\xi_{\mathcal{S}^+}) | \sigma(\xi_{[\mathcal{S}]})\right).$$

• When using \bar{C}_s instead of C_s , the value functions become convex.

We can thus employ the SDDP algorithm to compute approximations of these value functions.

0000 0000 000	00000	0000000 •00 00000

Some results

Seasonal Storage Valuation – some results I

- SDDPSolver requires convex problem: continuous relaxation of any formulation or Lagrangian dual
- Brazilian hydro-heavy system:
 53 hydro (3 cascade), 98 thermal (coal, gas, nuclear), stochastic inflows (20 scenarios)
- Out-of-sample simulation: 1000 scenarios

edf

 Only 0.4% better, but just changing a few lines in the configuration (Lagrangian about 4 times slower, but can be improved)

Introduction
0000
000

īools 2000 Efficient investment

Convexification and the intermediate level

Summary 00

Some results

Seasonal Storage Valuation - some results II

- Single node (Switzerland)
- 60 stages (1+ year), 37 scenarios, 168 time instants (weekly UC)
- Units: 3 intermittent, 5 thermals, 1 hydro
- Out-of-sample simulation: all 37 scenarios to integer optimality

	Cont. relax.	Lag. relax.
Cost: Avg. / Std.	1.3165e+11 / 2.194e+10	1.2644e+11 / 2.167e+10
Time:	25m	7h30m

- Much longer, but:
 - \blacksquare simulation cost \approx 30m per scenario, largely dominant
 - save 4% just changing a few lines in the configuration
 - LR time can be improved (ParallelBundleSolver not used)

Introduction
0000
000

; >0 Efficient investment

Convexification and the intermediate level

Summary 00

Some results

Seasonal Storage Valuation - some results III

- A different single node (France)
- 60 stages (1+ year), 37 scenarios, 168 time instants (weekly UC)
- 83 thermals, 3 intermittent, 2 batteries, 1 hydro
- Out-of-sample simulation: all 37 scenarios to integer optimality

	Cont. relax.	Lag. relax.
Cost: Avg. / Std.	3.951e+11 / 1.608e+11	3.459e+11 / 8.903e+10
Time:	5h43m	7h54m

- Time not so bad (and 3h20m on average simulation per scenario) using ParallelBundleSolver with 5 threads per scenario
- That's 14% just changing a few lines in the configuration
- Starts happening regularly enough (and lower variance) to be believable

edf

Introdu	
0000	
000	

s DO Efficient investment

Convexification and the intermediate level

Summary 00

Some investment computations

Energy System Investment Problem - some results I

- Simplified version: solve SDDP only once, run optimization with fixed value-of-water function + simulation (SDDPGreedySolver)
- EdF EU scenario: 11 nodes (France, Germany, Italy, Switzerland, Eastern Europe, Benelux, Iberia, Britain, Balkans, Baltics, Scandinavia), 20 lines
- Units: 1183 battery, 7 hydro, 518 thermal, 40 intermittent
- 78 weeks hourly (168h), 37 scenarios (demand, inflow, RES generation)
- Investments: 3 thermal units + 2 transmission lines.
- Average cost: original (operational) 6.510e+12 optimized (investment + operational) 5.643e+12
- This is \approx 1 Trillion Euro, 15%
- Running time: ??? hours for value-of-water functions (EdF provided) + 10 hours (4 scenarios in parallel + ParallelBundleSolver with & threads) for the investment problem

Introduction

ols DOO Efficient investment

Convexification and the intermediate level

Summary 00

Some investment computations

Energy System Investment Problem – some results II

- Simplified version (fixed value-of-water with continuous relaxation)
- Same 11 nodes, 19 lines
- Less units: 7 hydros, 44 thermals, 24 batteries, and 42 intermittent
- More investments: 82 units + 19 transmission lines.
- 78 weeks hourly (168h), 37 scenarios (demand, inflow, RES generation)
- Average cost: original (operational) 3.312e+12 optimized (investment + operational) 1.397e+12
- This is ≈ 2 Trillion Euro, 137%
- Running time: 48 hours for value-of-water functions (2 nodes = 96 cores) + 5h 20m to solve the investment problem (1 nodes = 48 core)

Introduction	
0000	
000	

Tools 0000 Efficient investment

Convexification and the intermediate level

Summary 00

Some investment computations

Energy System Investment Problem

- The true version: value-of-water recomputed anew for each investment
- Still simplified: only one scenario (long way to go, but TwoStageStochasticBlock and BendersDecompositionSolver currently under active development, we'll get there eventually)
- EU scenario: 14 nodes (France, Germany, Italy, Switzerland, Eastern EU, Benelux, Iberia, Britain, Balkans, Baltics, Denmark, Finland, Sweden, Norway), 28 lines, 62 thermals, 54 intermittent, 8 hydros, 39 batteries
- 78 weeks hourly (168h), 37 scenarios (demand, inflow, RES generation)
- Investments: 99 units of all kinds + all transmission lines
- Two dedicated top-level servers with (each) 2 AMD Epyc 9654 (2.4Ghz, 96 cores, 192 threads, 384MB cache) with 1.5TB RAM (DDR5-4800)
- Requires extensive support for checkpointing and restarts (but less than on CINECA machines that had 24h time limit)

Introd	
000	0
000	

Tools 0000 Efficient investment

Convexification and the intermediate level

Summary 00

Some investment computations

Energy System Investment Problem: first steps

- Huge problem, so three steps approach
 - solve the Seasonal Storage Valuation with initial system (no investment)
 - solve Energy System Investment Problem with fixed value-of-water function out of SDDP (simulation-based optimization)
 - improve investment by dynamically recomputing value-of-water at every iteration
- Original system cost: (operational) 3.467e+12
 Optimized cost: operational 4.505e+11 + investment 2.284e+11 = total 6.789e+11
- Half an order of magnitude saving (suspect most value of lost load), 511% better investing on just 4 lines and 10 hydrogen power plants
- Running time: 15h18m for future cost function of the original system, 5h18m simulation-based investment problem (74 threads max)

			Convexification and the intermediate level	Summary
0000 000		00000 00	0000000 000 0000●	
Some investment co	moutations			

- Starting from previous solution, optimize with variable value-of-water
 - iteration 0: op. 4.505e+11 + inv. 2.284e+11 = total 6.789e+11 (1.8h) (very sparse investment decision)
 - iteration 1: op. 6.670+10 + inv. 5.635e+12 = total 5.702e+12 (22h) (almost completely dense investment decision)
 - iteration 2: op. 1.505e+12 + inv. 2.221e+11 = total 1.727e+12 (21h) (less dense investment decision)
 - iteration 3: op. 2.286e+11 + inv. 7.263e+11 = total 9.549e+11 (20h) (less dense investment decision)
- Already a factor of 2 better than original system (no investment)
- Using LPs in SDDP (many numerical issues), Lagrangian will be better and will be able to use way more threads (ParallelBundleSolver)
- Will improve over the fixed value-of-water, just not there as yet
- But we are getting there, thanks to SMS++

			Convexification and the intermediate level	Summary
0000 000		00000 00	0000000 000 000 0●	
Some investment co	moutations			

- Starting from previous solution, optimize with variable value-of-water
 - iteration 0: op. 4.505e+11 + inv. 2.284e+11 = total 6.789e+11 (1.8h) (very sparse investment decision)
 - iteration 1: op. 6.670+10 + inv. 5.635e+12 = total 5.702e+12 (22h) (almost completely dense investment decision)
 - iteration 2: op. 1.505e+12 + inv. 2.221e+11 = total 1.727e+12 (21h) (less dense investment decision)
 - iteration 3: op. 2.286e+11 + inv. 7.263e+11 = total 9.549e+11 (20h) (less dense investment decision)
- Already a factor of 2 better than original system (no investment)
- Using LPs in SDDP (many numerical issues), Lagrangian will be better and will be able to use way more threads (ParallelBundleSolver)
- Will improve over the fixed value-of-water, just not there as yet
- But we are getting there, thanks to SMS++

			Convexification and the intermediate level	Summary
0000 000		00000 00	0000000 000 000 0●	
Some investment co	moutations			

- Starting from previous solution, optimize with variable value-of-water
 - iteration 0: op. 4.505e+11 + inv. 2.284e+11 = total 6.789e+11 (1.8h) (very sparse investment decision)
 - iteration 1: op. 6.670+10 + inv. 5.635e+12 = total 5.702e+12 (22h) (almost completely dense investment decision)
 - iteration 2: op. 1.505e+12 + inv. 2.221e+11 = total 1.727e+12 (21h) (less dense investment decision)
 - iteration 3: op. 2.286e+11 + inv. 7.263e+11 = total 9.549e+11 (20h) (less dense investment decision)
- Already a factor of 2 better than original system (no investment)
- Using LPs in SDDP (many numerical issues), Lagrangian will be better and will be able to use way more threads (ParallelBundleSolver)
- Will improve over the fixed value-of-water, just not there as yet
- But we are getting there, thanks to SMS++

			Convexification and the intermediate level	Summary
0000 000		00000 00	0000000 000 000 0●	
Some investment co	moutations			

- Starting from previous solution, optimize with variable value-of-water
 - iteration 0: op. 4.505e+11 + inv. 2.284e+11 = total 6.789e+11 (1.8h) (very sparse investment decision)
 - iteration 1: op. 6.670+10 + inv. 5.635e+12 = total 5.702e+12 (22h) (almost completely dense investment decision)
 - iteration 2: op. 1.505e+12 + inv. 2.221e+11 = total 1.727e+12 (21h) (less dense investment decision)
 - iteration 3: op. 2.286e+11 + inv. 7.263e+11 = total 9.549e+11 (20h) (less dense investment decision)
- Already a factor of 2 better than original system (no investment)
- Using LPs in SDDP (many numerical issues), Lagrangian will be better and will be able to use way more threads (ParallelBundleSolver)
- Will improve over the fixed value-of-water, just not there as yet
- But we are getting there, thanks to SMS++

Introduction 0000 000	Tools 0000	Efficient investment 00000 00	Convexification and the intermediate level 00000000 000 00000	Summary ●O

- In this talk we discussed the question of investment in power systems.
- We have shown how we can leverage the convexifying effect of the Lagrangian to balance accuracy and computability: both in investment and SDDP.

			Summary
0000 000	00000 00	0000000 000 00000	00

Some references I

W. van Ackooij and N. Oudjane. On supply and network investment in power systems.
 4OR, pages 1–17, 2024.
 doi: 10.1007/s10288-024-00566-8

W. van Ackooij, I. Danti Lopez, A. Frangioni, F. Lacalandra, and M. Tahanan.

Large-scale unit commitment under uncertainty: an updated literature survey. Annals of Operations Research, 271(1):11–85, 2018. doi: 10.1007/s10479-018-3003-z

Bibliography

Bibliography I

[[Frangioni et al.(2011)]]A. Frangioni, C. Gentile, and F. Lacalandra. Sequential Lagrangian-MILP Approaches for Unit Commitment Problems.

International Journal of Electrical Power and Energy Systems, 33:585-593.2011.

- [Ivan Ackooij and Oudjane(2024)]
 [W. van Ackooij and N. Oudjane. On supply and network investment in power systems. 4OR, pages 1-17, 2024. doi: 10.1007/s10288-024-00566-8.

[[van Ackooij et al.(2018)]]W. van Ackooij, I. Danti Lopez, A. Frangioni, F. Lacalandra, and M. Tahanan.

Large-scale unit commitment under uncertainty: an updated literature survey.

Annals of Operations Research, 271(1):11-85, 2018. doi: 10.1007/s10479-018-3003-z.

