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Introduction

Introduction

m The upcoming energy systems showcase a need for flexibility.
m This need stems from increased (intermittent) generation
m Measuring this need requires representing uncertainty and constraints.

m Typically convexity or favourable structure is lost.
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Introduction

Motivation

m For “energy transition" studies there is a need to compute a “good" energy
mix.

m This good “mix" serves as the basis for the operational evaluation and
possibly policy “illustration”;

m There is a question of geographical scale: Europe, NUTSO - maybe
NUTS2 ?
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Introduction

Motivation Il

m So “what is the cost optimal mix?"
m This is an optimization problem, but it involves substantial difficulties.

m In particular one needs a “good way" to compute the operational cost at
a given investment decision.
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Introduction
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Some structure

Layers

For a given investment strategy, evaluating the operational cost has typi-
cally two layers:

The first layer is that of “seasonal storage valuation": computing the cost-
optimal strategy of long-term storage - classically hydro

m The second layer - underneath seasonal storage - is that of unit-commitment.

m Investment is thus a stacked three layer optimization problem.
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Some structure

Difficulties

m Each layer is already challenging on its own - exacerbated by the geo-
graphical scale.

m The seasonal storage layer is typically a multi-stage stochastic program

m Unit-commitment problems can be challenging too, especially with a de-
tailed model.
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Some structure

Schematic problem

m with k = (k1, ..., kn) the capacity vector : k; being the investment in tech-
nology /,

m we face:
min F(k) + O(k).

REK
m The deterministic operational cost would look like:

O(k) :=min > Z ci(xi)

i1 =
st X € Xi

n Kj
D)WL LIEE
i=1 j=1
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Primals and Duals

Tools
m Primals and Duals
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Primals and Duals

Primal view

m In the presence of convexity: X; convex, ¢; convex, the inner operational
problem is such that the synchronized solution is also optimal:

syn 1 a *
X" = P ZX"J'

.

j=1
m Under these assumptions the operational cost is thus also:
n
O(K,) = mxin Z K,,'C,'(X/)
i=1
st xeX

n

Z kiAiXi > d,

i=1

computationally much less involved.

~‘“eDF
m of course convexity is not present: let us look at the dual b
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Primals and Duals

Dual view

m If we dualize the power balance equation we get the Lagrangian dual
problem:
O(k) = max 0(k, ),
with )
(9(,%7 )\) = /\Td + Z Ki ()gll)r}, C,'(X/) - )\TA/X,)

i=1

m it is well known that this Lagrangian dual is also the Lagrangian dual of
some appropriately convexified primal problem.
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Primals and Duals
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m This dual of the convexified primal is:

6(r, \) = \Td — zn: ri(cl)" (ATN),

i=1
with ¢ = ¢ + 1x, and (¢)* being Fenchel’s conjugate.

m In the Lagrangian dual we recognize once more the favourable multiplica-
tive structure with respect to ;.

m It is furthermore known that Lagrangian duals compute effectively.
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Efficient investment
m Surrogates
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Surrogates

The surrogate

m We thus suggest to replace the investment problem with the convexified
version:
min F(x) + O(k).

KEK

m This surrogate has the advantage of being automatically computed by a
well-established computational procedure

m The same computational procedure allows for parallelization, hot-starting
and many advanced computational “tricks".

[
& SeDF

15/39



Efficient investment
[e]e] le]e}

Surrogates

Bounding the gap

We can establish:
Theorem (Bounding the approximation gap)
With O : K — R the operational cost map and O, the “Lagrangian dual” surrogate. Assume moreover that

m foreachi =1, ..., n, the sets X; are compact ;

m foreachi =1, ..., n, the cost functions c; are continuous.

m  the map ¢y (d — -) is convex continuously differentiable on (an open set containing) the compact set Co(Y)) (the convex hull of Y)
where Y = 27:1 Zf:i1 Y; is the Minkowski sum of the sets Y; := A;X;. Moreover, ¢y has Lg-Lipschitz gradient w.r.t. the
Euclidean norm || - || .

Then, for any k. € IC, the following bound on the duality gap can be exhibited

L
0 2
O — 0 < —(T+1), max A 1
() ,(n)_z( )151.%”,, (1)
where A, is the diameter of the compact set
T g
Ki = {w; = (¥j,Z)) € R' X R|y; = Ajxj, zj = cj(xj), withx; € X;}. )
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Surrogates

Bounding the gap Il

With S(x) := F(x) + O(x) and S(k) := F(x) + O(k)
Corollary (Bounding the relative error on system costs)

Suppose moreover that the fixed costs are linear and separable in each tech-
nology i.e., F(k) = Y7, kifi for some fi € R*. Then, for any xk € K, the
relative error on system costs is bounded as follows

2
maXi<i<n A,-

Yy ri(fi+ (k) |

o< S =S _ Lo 7 oy

S(r) 2 ®)

where ¢;(x) denotes the average optimal operational cost for technology i, i.e.

)
Ci(k) = % o4 ci(xij(k)) with x7;() being an optimal operational program for
the given in estment vector r € K.
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Efficient investment
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Particularizing the result

m With P"** the maximum power for technology /, we can make the estimate
precise:

max \ 2
(T max ™)

i il + T(k))

m So if we invest in many “small" units for large systems, the worst case
“gap" - is theoretically small.

S(x) — S(x)
05 5w

<(1+L3L (4)

m In practice ofcourse, [Frangioni et al.(2011)] show that the gap typically
does not exceed 0.5 % anyway.
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Some computations

A case

m We pick an 11 zone case from the plan4res H2020 Eu funded project’

m The data set is a stochastic mid-term problem with 78 weekly stages,
each at hourly granularity

m The problem has 7 reservoirs and more than a 1000 “generators"
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Some computations

Results

m The problem is solved through the SMS++ computer code and with the
StOpt SDDP solver in roughly 2 hours.

m Volumetric results for the reservoir look as follows:
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Seasonal storage

Convexification and the intermediate level
m Seasonal storage
m Some results
m Some investment computations
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Convexification and the intermediate level
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Seasonal storage

Structure of time

m We dispose of a larger time horizon T, further split into smaller time peri-
ods: subperiods. The latter represents a further subdivision of time.

m Each subperiod represents a stage. Each stage is impacted by uncer-
tainty on load, inflows, renewable generation, (outages)

[
& SeDF

22/39



Convexification and the intermediate level
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Seasonal storage

Structure of storage

m For each stage s and cascaded system c to consider we deal with the
following dynamics:

Vest = Ves + A f.s+ Azf&

where A', A? are appropriate matrices, £ s is the vector of flow rates and
&s the inflow process.
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Convexification and the intermediate level
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Seasonal storage

Structure of program

At a high level the optimization problem to solve appears as:

min E (Z Cs(f:,s))

st fos €M Ve Vs
fc,s = U(ﬁ[s]) Vs
Vest = Vs + Al f.s+ AZfs: ve,

m Here Cs is the operational cost attached with flow rate f. s for all cascading
systems.
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Convexification and the intermediate level
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Seasonal storage

Transition problem: unit-commitment

m Now the transition problem defines the cost function.

m The transition problem is most naturally modelled as a unit-commitment
problem.

m However we would like to be robust to new “sub-models" too.

m Ad-hoc convexification is unlikely to be “reliable” in multiple meanings of
the word.
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Convexification and the intermediate level
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Seasonal storage

Structure of cost

The cost would typically be of the following form:

Cs(f.s) ==min Z C"(p:’,),
iel
st p,€ My, iel
(p;,c, fC,S7 VC) S mc, Ve

ZP:,C + sz,i =D
c

icl
m Here 9; represents the feasible set of generation for various units.

m The cost functions C' can reasonably be assumed convex, as can i,
but this is not the case for 91;.

[
& SeDF

26/39



Convexification and the intermediate level
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Seasonal storage

The Lagrangian

By using the Lagrangian dual for solving the problem defining Cs
m we obtain an efficient solution procedure

m we solve an appropriate convexification, i.e.,
Ce(fs) :=min >~ C'(p.y),
iel
st p,ieCoMiel
(p- ¢ fe,s) Vc) € M., Ve

ch+ZP/—D

iel

m (if the objective function is not linear - we solve a slightly different convex-
ification - harder to make primally explicit)

m we pave the way for being able to use efficient stochastic algorithms foa
the upper layer %< €DF
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Convexification and the intermediate level
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Seasonal storage

Recursion

The problem admits the following recursion

Ds(V.s,&s) =min CS(f:»S) + v+ (V. s+ (&)
S.t.VC’S+ == VQS + /41 f;7s + A2§s VC
fe,s € Me, Ve.

and
Ver(V:,sJr (g[s]) =E ('b'§+(‘/:,s+a£s+)|g('£[s])) .
m When using Cs instead of Cs, the value functions become convex.

m We can thus employ the SDDP algorithm to compute approximations of
these value functions.
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Convexification and the intermediate level
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Some results

Seasonal Storage Valuation — some results |

B SDDPSolver requires convex problem: continuous relaxation of any for-
mU|atlon or Lagranglan dual ONS el Qiagrawa "Escll:err‘\z:xzco das Usinas Hidroelétricas do SIN

221-205

m Brazilian hydro-heavy system:
53 hydro (3 cascade), 98
thermal (coal, gas, nuclear),
stochastic inflows (20 scenar-
ios)

m Out-of-sample simulation:
1000 scenarios

\ Cont. relax. \ Lag. relax.
Cost: Avg. / Std. ‘ 4.6023e+9 / 1.3608e+9 ‘ 4.5860e+9 / 1.3556e+9

q
: . . . *, < eDF

m Only 0.4% better, but just changing a few lines in the Configuration
(Lagranagian about 4 times slower. but can be improved) 29/39
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Some results

Seasonal Storage Valuation — some results Il

m Single node (Switzerland)
m 60 stages (1+ year), 37 scenarios, 168 time instants (weekly UC)
m Units: 3 intermittent, 5 thermals, 1 hydro

m Out-of-sample simulation: all 37 scenarios to integer optimality

Cont. relax. Lag. relax.
Cost: Avg. /Std. | 1.3165e+11/2.194e+10 | 1.2644e+11/2.167e+10
Time: 25m 7h30m

m Much longer, but:

m simulation cost ~ 30m per scenario, largely dominant

B save 4% just changing a few lines in the configuration P
. . *‘:eDF
m LR time can be improved (ParallelBundleSolver not used)
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Some results

Seasonal Storage Valuation — some results Il|

m A different single node (France)
m 60 stages (1+ year), 37 scenarios, 168 time instants (weekly UC)
m 83 thermals, 3 intermittent, 2 batteries, 1 hydro

m Out-of-sample simulation: all 37 scenarios to integer optimality

Cont. relax. Lag. relax.
Cost: Avg./Std. | 3.951e+11/1.608e+11 | 3.459e+11/8.903e+10
Time: 5h43m 7h54m

m Time not so bad (and 3h20m on average simulation per scenario)
using ParallelBundleSolver with 5 threads per scenario

m That's 14% just changing a few lines in the configuration
ﬁ'ﬁ DF
m Starts happening regularly enough (and lower variance) to be believabl& ®
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Energy System Investment Problem — some results |

m Simplified version: solve SDDP only once, run optimization with fixed
value-of-water function + simulation (SDDPGreedySolver)

m EdF EU scenario: 11 nodes (France, Germany, Italy, Switzerland, Eastern
Europe, Benelux, Iberia, Britain, Balkans, Baltics, Scandinavia), 20 lines

m Units: 1183 battery, 7 hydro, 518 thermal, 40 intermittent
m 78 weeks hourly (168h), 37 scenarios (demand, inflow, RES generation)
m Investments: 3 thermal units + 2 transmission lines.

m Average cost: original (operational) 6.510e+12
optimized (investment + operational) 5.643e+12

m This is ~ 1 Trillion Euro, 15%

® Running time: ??? hours for value-of-water functions (EdF provided)
-+ 10 hours (4 scenarios in parallel + ParallelBundleSolver with@.~
threads) for the investment problem <~ €DF
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Some investment computations

Energy System Investment Problem — some results Il

m Simplified version (fixed value-of-water with continuous relaxation)

m Same 11 nodes, 19 lines

m Less units: 7 hydros, 44 thermals, 24 batteries, and 42 intermittent

m More investments: 82 units + 19 transmission lines.

m 78 weeks hourly (168h), 37 scenarios (demand, inflow, RES generation)

m Average cost: original (operational) 3.312e+12
optimized (investment + operational) 1.397e+12

m This is ~ 2 Trillion Euro, 137%

m Running time: 48 hours for value-of-water functions (2 nodes = 96 cores),
+ 5h 20m to solve the investment problem (1 nodes = 48 core) %~ €DF
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Some investment computations

Energy System Investment Problem

m The true version: value-of-water recomputed anew for each investment

m Still simplified: only one scenario (long way to go, but
TwoStageStochasticBlock and BendersDecompositionSolver
currently under active development, we’ll get there eventually)

m EU scenario: 14 nodes (France, Germany, ltaly, Switzerland, Eastern
EU, Benelux, lberia, Britain, Balkans, Baltics, Denmark, Finland, Sweden,
Norway), 28 lines, 62 thermals, 54 intermittent, 8 hydros, 39 batteries

m 78 weeks hourly (168h), 37 scenarios (demand, inflow, RES generation)
m Investments: 99 units of all kinds + all transmission lines

m Two dedicated top-level servers with (each) 2 AMD Epyc 9654 (2.4Ghz,
96 cores, 192 threads, 384MB cache) with 1.5TB RAM (DDR5-4800)

m Requires extensive support for checkpointing and restarts I~
(but less than on CINECA machines that had 24h time limit) 9~ €DF
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Some investment computations

Energy System Investment Problem: first steps

m Huge problem, so three steps approach

m solve the Seasonal Storage Valuation with initial system (no investment)

m solve Energy System Investment Problem with fixed value-of-water
function out of SDDP (simulation-based optimization)

m improve investment by dynamically recomputing value-of-water at
every iteration

m Original system cost: (operational) 3.467e+12
Optimized cost: operational 4.505e+11 + investment 2.284e+11 =
total 6.789e+11

m Half an order of magnitude saving (suspect most value of lost load),
511% better investing on just 4 lines and 10 hydrogen power plants

m Running time: 15h18m for future cost function of the original system,
5h18m simulation-based investment problem (74 threads max) *, < eDF
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Some investment computations

The Little-Big Kahuna results

m Starting from previous solution, optimize with variable value-of-water

m iteration O0: op. 4.505e+11 + inv. 2.284e+11 = total 6.789e+11 (1.8h)
(very sparse investment decision)
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Some investment computations

The Little-Big Kahuna results

m Starting from previous solution, optimize with variable value-of-water

m iteration O0: op. 4.505e+11 + inv. 2.284e+11 = total 6.789e+11 (1.8h)
(very sparse investment decision)

m iteration 1: op. 6.670+10 + inv. 5.635e+12 = total 5.702e+12 (22h)
(almost completely dense investment decision)
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Some investment computations

The Little-Big Kahuna results

m Starting from previous solution, optimize with variable value-of-water
m iteration O0: op. 4.505e+11 + inv. 2.284e+11 = total 6.789e+11 (1.8h)
(very sparse investment decision)

m iteration 1: op. 6.670+10 + inv. 5.635e+12 = total 5.702e+12 (22h)
(almost completely dense investment decision)

m iteration 2: op. 1.505e+12 + inv. 2.221e+11 = total 1.727e+12 (21h)
(less dense investment decision)
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Some investment computations

The Little-Big Kahuna results

m Starting from previous solution, optimize with variable value-of-water

m iteration O0: op. 4.505e+11 + inv. 2.284e+11 = total 6.789e+11 (1.8h)
(very sparse investment decision)

m iteration 1: op. 6.670+10 + inv. 5.635e+12 = total 5.702e+12 (22h)
(almost completely dense investment decision)

m iteration 2: op. 1.505e+12 + inv. 2.221e+11 = total 1.727e+12 (21h)
(less dense investment decision)

m iteration 3: op. 2.286e+11 + inv. 7.263e+11 = total 9.549e+11 (20h)
(less dense investment decision)

m Already a factor of 2 better than original system (no investment)

m Using LPs in SDDP (many numerical issues), Lagrangian will be better
and will be able to use way more threads (ParallelBundleSolver)

m Will improve over the fixed value-of-water, just not there as yet
m But we are getting there, thanks to sMS++ :‘;em:
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Summary

m In this talk we discussed the question of investment in power systems.

m We have shown how we can leverage the convexifying effect of the La-
grangian to balance accuracy and computability: both in investment and

SDDP.
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