

Università di Pavia

Transient Stability Constrained Optimal Power Flow Problems

HEXAGON 20 June 2024

Valentin Ilea

Motivation

POLITECNICO MILANO 1863

HEXAGON

Inertia (GW.s)

376

359

340

324

307

290 260

224

190

184

154

140

108

 $-$ case13

 $- \case12$

case11

case10

case9 case8

case7

-case6

 $-$ case 5

-case4

 $-$ case3

 $-case2$

 $-case1$

 2.5

 \overline{c}

- Standard Security Constrained OPF (SCOPF) problems give an optimal solution that guarantees steady-state security (control and state variables in-bounds, N-1 security criteria etc.)
- the increase of *converter-based* clean generation resources substitutes the *rotating-machine* based generation lowering the available system inertia and negatively affecting system's dynamic security:

• It is thus necessary to formulate an SCOPF that also considers Transient Stability aspects, in other words, a Transient Stability Constrained OPF (TSC-OPF)

 $\min \mathcal{C}(p) \qquad \rightarrow \quad p$ is the decision variable vector $p = (P_g, Q_g, V, \theta)^T$

such that

 $g_S(p) = 0 \rightarrow \infty$ set of the **steady-state** equality constraints (PF eq, branch currents, etc)

 $h_s(p) \geq 0 \rightarrow \infty$ set of the **steady-state** inequality constraints (capability, box bounds, N-1 security conditions etc)

• It is thus necessary to formulate an SCOPF that also considers Transient Stability aspects, in other words, a Transient Stability Constrained OPF (TSC-OPF)

 $\min \mathcal{C}(p) \qquad \rightarrow \quad p$ is the decision variable vector $p = (P_g, Q_g, V, \theta)^T$

such that

 $\dot{x} = f(x(t), y(t), p) \rightarrow x$ is the vector of state variables (rotor angles, generators frequencies, etc.) y is the vector of algebraic link variables dot operator is the derivative wrt. time

 $0 = g(x(t), y(t), p) \rightarrow$ link algebraic equations

 $x(t_0) = I_{x0}$ \rightarrow set of initial conditions for x

 $y(t_0) = I_{y0}$ \rightarrow set of initial conditions for y $h(x(t), y(t)) \leq 0$ \rightarrow stability constraints

• **Constraint transcription** is an algorithmic framework that decouples optimization algorithms and simulation tools [*]. Differential equations are integrated outside the optimization process and interfaced with NLP solvers:

[*] S. Abhyankar, G. Geng, M. Anitescu, X. Wang, and V. Dinavahi, "Solution techniques for transient stability-constrained optimal power flow - Part I," IET Gener. Transm. Distrib., vol. 11, no. 12, pp. 3177–3185, 2017

TSC-OPF – Numerical Optimization Methods - Constraint transcription HEXAGON

-
- *Integration into optimization problem:*

$$
H(x(p, t), y(p, t)) = \sigma \int_0^T [\max(0, h(x(p, t), y(p, t))]^{\eta} dt = 0
$$

- *Remarks:*
	- \triangleright $x(p,t)$ and $x(p,t)$ are expressed, using trajectory analysis, as an approximation valid in the vicinity of p_0 , the previous NLP optimal solution
	- \triangleright remember that $h(x(t), y(t))$ is the function quantifying the stability conditions
	- \triangleright !!! σ , μ are user defined parameters to assure smoothness of convergence
	- \triangleright the equality condition is, in general, to hard and may lead to divergence of NLP

TSC-OPF – Numerical Optimization Methods - Constraint transcription HEXAGON

• *Integration into optimization problem - relaxation*

 $H(x(p, t) - \rho, y(p, t) - \rho) \leq 0$

 \triangleright where ρ is a vector of positive slack variables minimized in the objective function

- *Simulation discretization:* the differential equations for all time steps are discretized to non-linear algebraic equations by using a numerical integration scheme.
	- ➢ in *power systems* optimization the few work available have used the Taylor integration scheme for this

$$
x(t) - x(t - \Delta t) = \frac{\Delta t}{2} \cdot [f(x(t), y(t), p) - f(x(t - p), y(t - p), p)]
$$

where Δt is the integration step

TSC-OPF – Numerical Optimization Methods - Simulation discretization TSC-OPF – Numerical Optimization Methods - Simulation discretization (HEXAGON)

• The solution of the differential equations at discrete time points is approximated by a Lagrange interpolating polynomial

[**] J. D. Hedengren, R.A. Shishavan, K. M. Powell, T. F. Edgar, "Nonlinear modeling, estimation and predictive control in APMonitor," Computers & Chemical Engineering, vol. 70, 2014, pp. 133-148.

• The objective is to determine a matrix M that maps the derivatives to the nonderivative values:

$$
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = M \left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} - \begin{bmatrix} x_0 \\ x_0 \\ x_0 \end{bmatrix} \right)
$$

• Time points for each interval are chosen according to *Lobatto quadrature*; In the case of 4 nodes per horizon step, the internal values are chosen at $t_{1,2} =$ 1 2 \pm 5 10 ; time points are shifted to a reference time of zero $(t_0 = 0)$ and a final time of $t_f = 1$

TSC-OPF – Numerical Optimization Methods - Simulation discretization ISC-OPF – Numerical Optimization Methods - Simulation discretization Mexicon Method

• Substituting the polynomial into the mapping relationship:

$$
\begin{bmatrix}\nB + 2Ct_1 + 3Dt_1^2 \\
B + 2Ct_2 + 3Dt_2^2 \\
B + 2Ct_3 + 3Dt_3^2\n\end{bmatrix} = M \begin{bmatrix}\nBt + Ct_1^2 + Dt_1^3 \\
Bt + Ct_2^2 + Dt_2^3 \\
Bt + Ct_3^2 + Dt_3^3\n\end{bmatrix}
$$
\n
$$
\implies M = \begin{bmatrix}\n1 & 2t_1 & 3t_1^2 \\
1 & 2t_2 & 3t_2^2 \\
1 & 2t_3 & 3t_3^2\n\end{bmatrix} \begin{bmatrix}\nt_1 & t_1^2 & t_1^3 \\
t_2 & t_2^2 & t_2^3 \\
t_3 & t_3^2 & t_3^3\n\end{bmatrix}^{-1}
$$

• Now, the mapping relationship is fully determined:

$$
M^{-1} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} - \begin{bmatrix} x_0 \\ x_0 \\ x_0 \end{bmatrix}
$$

TSC-OPF – Numerical Optimization Methods - Simulation discretization ISC-OPF – Numerical Optimization Methods - Simulation discretization Mexicon Method

• Example:

$$
\tau \cdot M \cdot \begin{pmatrix} x_1 & x_0 \\ x_2 - x_0 \\ x_3 & x_0 \end{pmatrix} = - \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}
$$

-
- *GOAL*: find the minimum inertia at control area level so that the frequency stability following major events (short-circuits, line trips, etc.) is guaranteed.

-
- *GOAL*: find the minimum inertia at control area level so that the frequency stability following major events (short-circuits, line trips, etc.) is guaranteed.

$$
\min \sum_{i \in \text{BUS}} H_i
$$

such that

$$
\frac{dP_{mi}}{dt} = \frac{1}{T_{govi}} \left[P_{mi}^0 + \frac{1}{R_i} \left(\frac{\Delta \omega_i}{\omega_s} - P_{mi} \right) \right]
$$

TSC-OPF – Frequency stability model https://www.assetter.com/discreence/stability model

• *Grid model & algebraic link equations*:

IIIIII

min $\sum H_i$ $i\epsilon$ **EDUS**

<u>|||||||||||||</u>

such that

$$
P_{e,i}(t) = \sum_{j=1}^{ngen} \left(E_{E_i} * E_{E_j} * |Y_{red,ij}| * \cos\left(\delta_i(t) - \delta_j(t) - \theta_{ij}\right) \right)
$$
\n
$$
\left(\sum_j H_j \cdot A_{n,j} \right) \cdot \omega_a^{Col^t} = \sum_j H_j \cdot A_{n,j} \cdot \omega_j^t \qquad \text{Col frequency calculation}
$$
\n
$$
ROCOF_i^{500} \le 2 \qquad ROCOF_i^{1000} \le 1.5 \qquad ROCOF_i^{2000} \le 1.25 \qquad \text{Stability Constraints}
$$

TSC-OPF – Frequency stability model New York Control of the HEXAGON

• *Modeling events*:

$$
P_{e,i}(t) = \sum_{j=1}^{ngen} \left(E_{E_i} * E_{E_j} * \left| Y_{red,ij} \right| * \cos \left(\delta_i(t) - \delta_j(t) - \theta_{ij} \right) \right)
$$

TSC-OPF – Frequency stability model Numerical test 1: method performance
Numerical test 1: method performance

- **Rueda Network (a CWE equivalent)**:
- 16 buses with generating units
- Optimization model transient simulation results were compared to results of Digsilent, a tool for PS transient simulation
- Shortcircuit at bus A2 is applied and cleared after 200 ms

TSC-OPF – Frequency stability model
Numerical test 1: method performance
 Ш

TSC-OPF – Frequency stability model
Numerical test 1: method performance
 IIIIII

TSC-OPF – Frequency stability model

Numerical test 3: Beal Case Sicily stid Numerical test 2: Real Case – Sicily grid

Sicily Network:

- Analyzed scenario: 8th May 2019
- minimum inertia available: 71.5 s
- maximum inertia available: 247 s
- a series of events have been considered and the minimum inertia required was determined as the envelope (max(min))

[Grid Map downloads \(entsoe.eu\)](https://www.entsoe.eu/data/map/downloads/)

TSC-OPF – Frequency stability model
Numerical test 2: Real Case – Sicily grid Numerical test 2: Real Case – Sicily grid

- **Sicily Network**: 90 MW demand disconnection
- the optimizer brings the inertia to the minimum possible
- stability limit is well satisfied \rightarrow not a critical case

TSC-OPF – Frequency stability model
Numerical test 2: Real Case – Sicily grid Numerical test 2: Real Case – Sicily grid

Sicily Network: Separation from continent

- the optimizer brings the inertia to the minimum possible while ROCOF1000 limit is pushed to its lower bound
- the case is critical in the minimum inertia is $H_{min} = 108 s$

The minimum inertia requirement is not satisfied by the initial dispatch provided by the energy market. In ASM formulation a minimum zonal inertia constrain is added:

$$
\sum Y_{u,t} \cdot E_u \ge \sum (Y_{u,t} \cdot A_u^n) \cdot H_{min,t}
$$

where:

- H_u is the inertia of generating unit u ;
- E_u is the kinetic energy of generating unit μ ;
- A_u^n is the apparent nominal power of generating unit u_i ;
- $H_{min,t}$ is the minimum level of inertia required.

Future Work **HEXAGON**

- test other "orthogonal collocation" approximation functions for $x(t)$ that could allow for a larger Δt
- consider also converter-based DERs dynamic models with synthetic inertia capabilities

HEXAGON

Questions

