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Motivation

e Standard Security Constrained — OPF (SCOPF) problems give an optimal solution that guarantees
steady-state security (control and state variables in-bounds, N-1 security criteria etc.)

* the increase of converter-based clean generation resources substitutes the rotating-machine based
generation lowering the available system inertia and negatively affecting system’s dynamic security:
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TSC-OPF - Formulation

* |t is thus necessary to formulate an SCOPF that also considers Transient Stability aspects, in other
words, a Transient Stability Constrained OPF (TSC-OPF)

min C(p) —> pis the decision variable vector p = (Fy,Qg,V, 0)T

such that

gs(p) =0 - set of the steady-state equality constraints (PF eq, branch currents, etc)

he(p) =0 - set of the steady-state inequality constraints (capability, box bounds,
N-1 security conditions etc)




TSC-OPF - Formulation

* |t is thus necessary to formulate an SCOPF that also considers Transient Stability aspects, in other
words, a Transient Stability Constrained OPF (TSC-OPF)

min C(p) —> pis the decision variable vector p = (Fy,Qg,V, 0)T

such that

x = f(x(t),y(t),p) 2 xisthe vector of state variables (rotor angles, generators frequencies, etc.)
y is the vector of algebraic link variables
dot operator is the derivative wrt. time

0 =g(x(t),y(t),p) =2 linkalgebraic equations

x(ty) =1,0, > setofinitial conditions for x

y(to) =1,0 > setofinitial conditions fory

h(x(t),y(t)) < 0 > stability constraints




TSC-OPF — Numerical Optimization Methods - Constraint transcription

e Constraint transcription is an algorithmic framework that decouples optimization algorithms and
simulation tools [*]. Differential equations are integrated outside the optimization process and
interfaced with NLP solvers:

State variable z(t), y(t)

111 Anything but trivial (works well for
small systems, though) /\

\[ Trajectory Sensitivity ] [ DAE Solver ]

Gradients\—y /A
ox(t) dy(t) [ NLP Solver ] Decision vari-

op op
able p

[*] S. Abhyankar, G. Geng, M. Anitescu, X. Wang, and V. Dinavahi, “Solution techniques for transient stability-constrained
optimal power flow - Part I,” IET Gener. Transm. Distrib., vol. 11, no. 12, pp. 3177-3185, 2017




TSC-OPF — Numerical Optimization Methods - Constraint transcription

* Integration into optimization problem:

T
H(x(p,1),y(p,1)) =0 f [ max (0, h(x(p, 1), y(p,1)]"dt = 0

e Remarks:

» x(p,t) and x(p,t) are expressed, using trajectory analysis, as an approximation valid in the
vicinity of p,, the previous NLP optimal solution

» remember that h(x(t), y(t)) is the function quantifying the stability conditions

» W g, uare user defined parameters to assure smoothness of convergence

» the equality condition is, in general, to hard and may lead to divergence of NLP




TSC-OPF — Numerical Optimization Methods - Constraint transcription

* Integration into optimization problem - relaxation
H(x(p,t) —p,y(,t) —p) <0

» where p is a vector of positive slack variables minimized in the objective function
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TSC-OPF — Numerical Optimization Methods - Simulation discretization

* Simulation discretization: the differential equations for all time steps are discretized to non-linear
algebraic equations by using a numerical integration scheme.

» in power systems optimization the few work available have used the Taylor integration scheme
for this

At

x(t) —x(t —At) = >

[f(x(8),y(t),p) — f(x(t —p),y(t —p),p)]

where At is the integration step




TSC-OPF — Numerical Optimization Methods - Simulation discretization
Orthogonal Colocation Method [**]

* The solution of the differential equations at  The objective is to determine a matrix M
discrete time points is approximated by a that maps the derivatives to the non-
Lagrange interpolating polynomial derivative values:

x(t) = A+ Bt + Ct?> + Dt3 (X1 x1] [0
x(t) l_ml [x] 2 [*
| X2 X3 X3 X3 X0

X0 ; * Time points for each interval are chosen
At R according to Lobatto quadrature; In the case
1 : g t of 4 nodes per horizon step, the internal
o t1 ¢ty t
1, V5 . .
? values are chosen at t; , = 5 + 7o time points
[**] J. D. Hedengren, R.A. Shishavan, K. M. Powell, T. F. Edgar, hifted t f t f t =0
“‘Nonlinear modeling, estimation and predictive control in APMonitor,” are snirte O a rererence time ot zZero ( 0~ )
Computers & Chemical Engineering, vol. 70, 2014, pp. 133-148. and a final time of t=1
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TSC-OPF — Numerical Optimization Methods - Simulation discretization

Orthogonal Colocation Method

e Substituting the polynomial into the mapping relationship:

"B+ 2Ct; +3Dt? ] "Bt + Ct2 +Dt3 ]
B+2Ct, +3Dt5 | _ Bt + Ct3 + Dt3
Bixt:zoé - BtiCé:D; t2n ] faod 417
L oo - L g = M= |1 2t, 33| |t 2 &5
1 2t 34 B b G q B 1 2t3 3t2 ts t3 3
1 26, 35| |cl= M|tz 8 6] |c
1 2t; 3t2 L_ ty 2 63 [D]

* Now, the mapping relationship is fully determined:

X1 X1 X0
X3 X3 X0
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TSC-OPF — Numerical Optimization Methods - Simulation discretization

Orthogonal Colocation Method

 Example:
lrdx B
dt
X1 Xp X1
X1 | X1 | [ Xo | > T-M X2 —Xo | = —| X2
X3 Xp X3
X _ X X —
M_l 2 — 2 — 0
X3 X3 X0

OLITECNICO MILANO 1863




TSC-OPF — Frequency stability model

* GOAL: find the minimum inertia at control area level so that the frequency stability following
major events (short-circuits, line trips, etc.) is guaranteed.

min Z H;

IEBUS

such that

dAw;
2H; — * =P — Pei — D; - Aw;




TSC-OPF — Frequency stability model

* GOAL: find the minimum inertia at control area level so that the frequency stability following
major events (short-circuits, line trips, etc.) is guaranteed.

min Z H;

iIEBUS
such that Governor
Fuel v freq meas
dpmi _ 1 PO. + 1 A(x)l' _p.
dt Tgovi mt Ri Wg mt




TSC-OPF — Frequency stability model

* Grid model & algebraic link equations:

Electric Grid Y,

Toen . :'~| l
i ~ S i el |1
U

°
E_ETCF: e o :I~|
_gen, ‘ ’ Igen = (YA —Yp- YD_1 ' YC) * Eg

ot ° Y,
Eg . _
— Igen = I'req * EE




TSC-OPF — Frequency stability model

min z H;

IEBUS

such that

ngen

Pei() = ) (Eey* Eej * |Yreass] * cos (8:(8) = §(6) — 0yy))

j=1

<Zj H; -An,j> . @G0! = Zj H;-Ayj-w; | COlfrequency calculation

ROCOF?* <2 ROCOF!®®® <15 ROCOF?%0 < 1_25] Stability Constraints




TSC-OPF — Frequency stability model

* Modeling events:

ngen

Pei(® = ) (Ez; * Bz, * [Vreass] * cos (8:(6) - §,0) — 6;7))

J=1

Short-Circuit Generation trip

Sfrom Pﬁom . P.'o o -

i Otom Yo (0% J

Pre-fault

Post-fault
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TSC-OPF — Frequency stability model
Numerical test 1: method performance

Rueda Network (a CWE equivalent):

16 buses with generating units

Optimization model transient simulation
results were compared to results of
Digsilent, a tool for PS transient
simulation

Shortcircuit at bus A2 is applied and
cleared after 200 ms
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TSC-OPF — Frequency stability model

Numerical test 1: method performance

1.015 T

DigSientG5 — — .GAMS-G5

0.99




TSC-OPF — Frequency stability model

Numerical test 1: method performance

= DigSilent G1

Simulation Discretization method  At,,,, [ms]

=== DigSilent G6
= DigSilent G7
== DigSilent G8
== DigSilent G9
DigSilent G10
= DigSilent G11
=~ DigSilent G12

Trapezoid 20

Orthogonal colocation 250

7

== DigSilent G13
= DigSllent G14
—DigSilent G15| |
= DigSllent G16
GAMS-G1
= = 'GAMS-G2
= = 'GAMS-G3
= = 'GAMS-G4
= = 'GAMS-G5 [
= = 'GAMS-G6
= = 'GAMS-G7
GAMS-G8
= = 'GAMS-G9
= = 'GAMS-G10 |4
= = GAMS-G!1
= = 'GAMS-G12
= = 'GAMS-G13
= = 'GAMS-G14
GAMS-G15 | |
= = 'GAMS-G16

07 \ | |

<./} POLITECNICO MILANO 1863



TSC-OPF — Frequency stability model
Numerical test 2: Real Case — Sicily grid

Sicily Network:

Paradis
S F. Mela a
- Analyzed scenario: 8t" May 2019 " el e Corriol Sorgen?emano
Partinico TerminiTermini Imeresé
Trapani-Salemi =0 aracoli
- minimum inertia available: 71.5 s ol £ ' Ciminna
) ) . . artanna o, Pdles
- maximum inertia available: 247 s ~_ fPantano
Sambuca < ' : :
Y ® Misterbianco
Cattolica Eraclea-® Favara™., 5
- aseries of events have been considered
and the minimum inertia required was hlaramogle,
determined as the envelope (max(min)) i Ragusa

Grid Map downloads (entsoe.eu)



https://www.entsoe.eu/data/map/downloads/

TSC-OPF — Frequency stability model

Numerical test 2: Real Case — Sicily grid

Sicily Network: 90 MW demand disconnection

- the optimizer brings the inertia to the <
minimum possible 2
- 50o 0.5 1 1.5 2 LARP | 3
e e . Time [s] Phor
- stability limit is well satisfied = not a 5006 | | co | St
critical case T s0.04]- |
gso.oz— .
50 1 | | 1 |
0 0.5 1 1.5 2 25 3
Time [s]
@ ROCOF
i0-04 T T T T T T T T T
S 002f \ i
o)
O 0 | | 1 | | I 1 1 | =
8 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Time windows
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TSC-OPF — Frequency stability model

Numerical test 2: Real Case — Sicily grid

Sicily Network: Separation from continent

Generators frequency
T
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- the optimizer brings the inertia to the minimum possible while ROCOF1000 limit is pushed to its lower bound
- the case is critical in the minimum inertia is H,,;;;, = 108 s




Minimum inertia constrain in ASM algorithm

The minimum inertia requirement is not satisfied by

Sicily Inertia the initial dispatch provided by the energy market. In
EO ASM formulation a minimum zonal inertia constrain is
5
100 added:

95
90
85

32 | —&— Initial z Yu,t -E, = Z(Yu,t ) AZ) ) Hmin,t
70 /

65

60
1 2 3 4 5 6 where:

timestamp e H, is the inertia of generating unit u;
e [E, is the kinetic energy of generating unit u;
e Al is the apparent nominal power of generating unit u;
 Hpin. is the minimum level of inertia required.

H [s]
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Future Work

- test other “orthogonal collocation” approximation functions for x(t) that could allow for a larger At

- consider also converter-based DERs dynamic models with synthetic inertia capabilities
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Questions
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