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Motivation

• Standard Security Constrained – OPF (SCOPF) problems give an optimal solution that guarantees
steady-state security (control and state variables in-bounds, N-1 security criteria etc.)

• the increase of converter-based clean generation resources substitutes the rotating-machine based
generation lowering the available system inertia and negatively affecting system’s dynamic security:
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TSC-OPF - Formulation HEXAGON

• It is thus necessary to formulate an SCOPF that also considers Transient Stability aspects, in other
words, a Transient Stability Constrained OPF (TSC-OPF)

min𝐶(𝑝) → 𝑝 is the decision variable vector 𝑝 = (𝑃𝑔, 𝑄𝑔, 𝑉, 𝜃)
𝑇

𝑔𝑠 𝑝 = 0 → set of the steady-state equality constraints (PF eq, branch currents, etc)

such that

ℎ𝑠 𝑝 ≥ 0 → set of the steady-state inequality constraints (capability, box bounds,
N-1 security conditions etc)  



4

TSC-OPF - Formulation HEXAGON

• It is thus necessary to formulate an SCOPF that also considers Transient Stability aspects, in other
words, a Transient Stability Constrained OPF (TSC-OPF)

min𝐶(𝑝) → 𝑝 is the decision variable vector 𝑝 = (𝑃𝑔, 𝑄𝑔, 𝑉, 𝜃)
𝑇

such that

ሶ𝑥 = 𝑓(𝑥(𝑡), 𝑦(𝑡), 𝑝)→ 𝑥 is the vector of state variables (rotor angles, generators frequencies, etc.)
𝑦 is the vector of algebraic link variables
dot operator is the derivative wrt. time

𝑥 𝑡0 = 𝐼𝑥0 → set of initial conditions for 𝑥

0 = 𝑔(𝑥(𝑡), 𝑦(𝑡), 𝑝)→ link algebraic equations

𝑦 𝑡0 = 𝐼𝑦0 → set of initial conditions for y 𝒉 𝒙 𝒕 , 𝒚 𝒕 ≤ 𝟎 → stability constraints
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TSC-OPF – Numerical Optimization Methods - Constraint transcription HEXAGON

• Constraint transcription is an algorithmic framework that decouples optimization algorithms and
simulation tools [*]. Differential equations are integrated outside the optimization process and
interfaced with NLP solvers:

[*] S. Abhyankar, G. Geng, M. Anitescu, X. Wang, and V. Dinavahi, “Solution techniques for transient stability-constrained
optimal power flow - Part I,” IET Gener. Transm. Distrib., vol. 11, no. 12, pp. 3177–3185, 2017

!!! Anything but trivial (works well for
small systems, though)
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TSC-OPF – Numerical Optimization Methods - Constraint transcription HEXAGON

• Integration into optimization problem:

• Remarks:

➢ 𝑥(𝑝, 𝑡) and 𝑥(𝑝, 𝑡) are expressed, using trajectory analysis, as an approximation valid in the
vicinity of 𝑝0, the previous NLP optimal solution

➢ remember that ℎ(𝑥(𝑡), 𝑦(𝑡)) is the function quantifying the stability conditions

➢ !!! 𝜎, 𝜇 are user defined parameters to assure smoothness of convergence

➢ the equality condition is, in general, to hard and may lead to divergence of NLP
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TSC-OPF – Numerical Optimization Methods - Constraint transcription HEXAGON

• Integration into optimization problem - relaxation

𝐻 𝑥 𝑝, 𝑡 − 𝜌, 𝑦 𝑝, 𝑡 − 𝜌 ≤ 0

➢ where 𝜌 is a vector of positive slack variables minimized in the objective function
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TSC-OPF – Numerical Optimization Methods - Simulation discretization HEXAGON

• Simulation discretization: the differential equations for all time steps are discretized to non-linear
algebraic equations by using a numerical integration scheme.

➢ in power systems optimization the few work available have used the Taylor integration scheme
for this

where Δ𝑡 is the integration step

𝑥 𝑡 − 𝑥 𝑡 − Δ𝑡 =
Δ𝑡

2
∙ 𝑓 𝑥 𝑡 , 𝑦 𝑡 , 𝑝 − 𝑓 𝑥 𝑡 − 𝑝 , 𝑦 𝑡 − 𝑝 , 𝑝
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TSC-OPF – Numerical Optimization Methods - Simulation discretization
Orthogonal Colocation Method [**] HEXAGON
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• The solution of the differential equations at
discrete time points is approximated by a
Lagrange interpolating polynomial
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• The objective is to determine a matrix M
that maps the derivatives to the non-
derivative values:

• Time points for each interval are chosen
according to Lobatto quadrature; In the case
of 4 nodes per horizon step, the internal

values are chosen at 𝑡1,2 =
1

2
±
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10
; time points

are shifted to a reference time of zero (t0 = 0)
and a final time of tf = 1

[**] J. D. Hedengren, R.A. Shishavan, K. M. Powell, T. F. Edgar,

“Nonlinear modeling, estimation and predictive control in APMonitor,”

Computers & Chemical Engineering, vol. 70, 2014, pp. 133-148.
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TSC-OPF – Numerical Optimization Methods - Simulation discretization
Orthogonal Colocation Method HEXAGON

• Substituting the polynomial into the mapping relationship:

⇒

• Now, the mapping relationship is fully determined:
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TSC-OPF – Numerical Optimization Methods - Simulation discretization
Orthogonal Colocation Method HEXAGON

• Example:

𝜏 ∙ 𝑀 ∙

𝑥1
𝑥2
𝑥3

−

𝑥0
𝑥0
𝑥0

= −

𝑥1
𝑥2
𝑥3
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TSC-OPF – Frequency stability model HEXAGON

• GOAL: find the minimum inertia at control area level so that the frequency stability following
major events (short-circuits, line trips, etc.) is guaranteed.
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TSC-OPF – Frequency stability model HEXAGON

• GOAL: find the minimum inertia at control area level so that the frequency stability following
major events (short-circuits, line trips, etc.) is guaranteed.
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TSC-OPF – Frequency stability model HEXAGON

• Grid model & algebraic link equations:

𝐼𝑔𝑒𝑛
0

=
𝑌𝐴 𝑌𝐵
𝑌𝐶 𝑌𝐷

𝐸𝐸
𝑉

𝐼 = 𝑌 𝑉
Electric Grid

𝐼𝑔𝑒𝑛 = 𝑌𝐴 − 𝑌𝐵 ∙ 𝑌𝐷
−1 ∙ 𝑌𝐶 ∗ 𝐸𝐸

𝐼𝑔𝑒𝑛 = 𝑌𝑟𝑒𝑑 ∗ 𝐸𝐸

⟹
⟹
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TSC-OPF – Frequency stability model HEXAGON

min 

𝑖∈𝑩𝑼𝑺

𝐻𝑖

such that


𝑗
𝐻𝑗 ∙ 𝐴𝑛,𝑗 ∙ 𝜔𝑎

𝐶𝑂𝐼𝑡 =
𝑗
𝐻𝑗 ∙ 𝐴𝑛,𝑗 ∙ 𝜔𝑗

𝑡 COI frequency calculation

𝑅𝑂𝐶𝑂𝐹𝑖
500 ≤ 2 𝑅𝑂𝐶𝑂𝐹𝑖

1000 ≤ 1.5 𝑅𝑂𝐶𝑂𝐹𝑖
2000 ≤ 1.25 Stability Constraints
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TSC-OPF – Frequency stability model HEXAGON

• Modeling events:

Short-Circuit Generation trip
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TSC-OPF – Frequency stability model 
Numerical test 1: method performance HEXAGON

Rueda Network (a CWE equivalent):

- 16 buses with generating units

- Optimization model transient simulation
results were compared to results of
Digsilent, a tool for PS transient
simulation

- Shortcircuit at bus A2 is applied and
cleared after 200 ms
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HEXAGON
TSC-OPF – Frequency stability model 
Numerical test 1: method performance



19

HEXAGON
TSC-OPF – Frequency stability model 
Numerical test 1: method performance

Simulation Discretization method 𝜟𝒕𝒎𝒂𝒙 [ms]

Trapezoid 20

Orthogonal colocation 250
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HEXAGON
TSC-OPF – Frequency stability model 
Numerical test 2: Real Case – Sicily grid

Sicily Network:

- Analyzed scenario: 8th May 2019

- minimum inertia available: 71.5 s
- maximum inertia available: 247 s 

- a series of events have been considered 
and the minimum inertia required was 
determined as the envelope (max(min))

Grid Map downloads (entsoe.eu)

https://www.entsoe.eu/data/map/downloads/
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HEXAGON
TSC-OPF – Frequency stability model 
Numerical test 2: Real Case – Sicily grid

Sicily Network: 90 MW demand disconnection

- the optimizer brings the inertia to the 
minimum possible

- stability limit is well satisfied → not a 
critical case
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HEXAGON
TSC-OPF – Frequency stability model 
Numerical test 2: Real Case – Sicily grid

Sicily Network: Separation from continent

- the optimizer brings the inertia to the minimum possible while ROCOF1000 limit is pushed to its lower bound
- the case is critical in the minimum inertia is 𝐻𝑚𝑖𝑛 = 108 𝑠
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HEXAGON
Minimum inertia constrain in ASM algorithm 

𝑌𝑢,𝑡 ∙ 𝐸𝑢 ≥ 𝑌𝑢,𝑡 ∙ 𝐴𝑢
𝑛 ∙ 𝐻𝑚𝑖𝑛,𝑡
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The minimum inertia requirement is not satisfied by
the initial dispatch provided by the energy market. In
ASM formulation a minimum zonal inertia constrain is
added:
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HEXAGONFuture Work

- test other “orthogonal collocation” approximation functions for x(t) that could allow for a larger t

- consider also converter-based DERs dynamic models with synthetic inertia capabilities
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HEXAGON

Questions
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