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The electricity sector will play a major role in the journey to 
decarbonize our economy

Projected US primary energy flows for a net-zero scenario. Source: https://netzeroamerica.princeton.edu/ 2

https://netzeroamerica.princeton.edu/
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Capacity expansion models are key to support a sustainable and 
equitable transition in the electricity sector

Source: https://netzeroamerica.princeton.edu/

• Utility integrated resource and 
investment planning.

• Techno-economic analysis of emerging 
energy technologies.

• Evaluation of system-level impacts of 
policy and regulatory frameworks.

• Uncertainty and scenario analysis.

• Robust strategies to transition to net-
zero emissions electricity systems.

https://netzeroamerica.princeton.edu/
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Large-scale Mixed Integer Linear Problems (MILPs)

INVESTMENT 
DECISIONS

• How much new capacity for 
wind farms / solar panels/ 
batteries / electrolyzers? 

• Where to install them?
• How much coal and natural 

gas capacity should be 
retired?

OPERATIONAL AND 
POLICY CONTRAINTS

Engineering detail: 
• Unit commitment
• Economic dispatch 
• Hourly temporal resolution
• Linearised power flow

Policy constraints:
• CO2 emissions cap

MODELING
REQUIREMENTS

• Long term planning horizon
• Multiple scenarios for 

robustness 
• High spatial resolution 

(e.g., to evaluate local 
socio-economical effects)

Minimize investment and operating costs

Capacity Variables Linear Constraints High Dimensionality



The need: advancing solution algorithms for improved 
computational performance
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Full-resolution MILP with O(100,000,000s) variables and 
constraints, which is intractable even using the best commercial 
solvers.

In practice, modelers rely on carefully designed abstraction 
techniques:

• Sampling representative time periods or ignoring sequential 
operations entirely.

• Aggregating regions into larger geographical zones.

• Ignoring key operational constraints. 

These abstractions can ensure models are computationally tractable 
but come at the cost of significantly reduced accuracy that impacts 
their ability to provide credible decision support.
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• New computationally efficient decomposition 
methods for electricity capacity expansion 
models.

• Runtime scales linearly with operational sub-
periods (e.g., weeks), enabling planning with 
multiple weather years or planning stages with 
8,736 hours

• Discrete investment/retirement decisions capture 
economies of unit scale (e.g., transmission lines)

• Linearized unit commitment decisions in 
operations at hourly time steps

• Long-duration energy storage & reservoir hydro

Some exciting progress

https://doi.org/10.1287/ijoo.2023.0005

New preprint: “Regularized Benders Decomposition for High 
Performance Capacity Expansion Models” available at: 
https://arxiv.org/abs/2403.02559

https://doi.org/10.1287/ijoo.2023.0005
https://arxiv.org/abs/2403.02559


How is it done?
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• Objective: minimize investment and operating costs

• Planning decision variables: discrete investment and 
retirement decisions for each planning period.

• Operational decision variables: generators dispatch, 
storage levels, unit commitment, power flows.

• Linearized power flow, unit commitment, and short-
duration energy storage constraints with cyclic 
approximation (linking first and last hour of each 
sub-period).

• Sub-period coupling constraints, including policy 
constraints and long-duration storage constraints 
(e.g. hydropower resources)

Mathematical formulation
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Common to many existing capacity expansion 
models, including widely used open-source 
models like PyPSA, SWITCH, and GenX.



Block-structured capacity expansion model
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Standard Benders decomposition method
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Operational sub-problem

Planning sub-problem

Investment decisions

Sub-period coupling 
constraints
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Standard Benders decomposition
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Iterate between planning and operational sub-problems

Planning sub-problem Operational sub-problem

Note that the operational sub-
problem represents a full year with 
hourly resolution



Decoupling operational sub-periods
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Using auxiliary variables, we subdivide the operational year into shorter sub-periods:

• In the case of a CO2 emission cap, we have that:

is equivalent to:

where variables       are emission budgets for each sub-period.

• In the case of long-duration energy storage, we introduce auxiliary variables           and
corresponding to storage levels at the start and end of each sub-period.  



Decoupling operational sub-periods
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With these reformulations, we can apply Bender decomposition considering investment and 
retirement decisions as well as sub-period decoupling variables as planning decisions



New Benders decomposition scheme
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Planning sub-problem Operational sub-problems

The operational sub-periods 
can now be optimized in 
parallel



OK but…does it work?
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Test cases

2-zone 6-zone

12-zone 19-zone

Zones Number of 
resource 
clusters

Variables Constraints

2 62 1.1 million 3.4 million
6 175 3.4 million 10.5 million
12 285 6.2 million 19.3 million
19 437 9.7 million 30.4 million

• Single-period planning model with hourly resolution.

• These model sizes are for a case with 52 weeks, i.e., 
8736 time steps.

• Generation and transmission expansion modelled by 
integer investment decisions.

• We considered cases with CO2 policy constraints.



Weeks
Zones

2 12 22 32 42 52

2 1.1 1.2 1.4 1.6 1.9 2.0

6 6.1 10.6 16.4 21.6 25.9 36.8

12 89.5 86.2 128.0 165.2 191.1 200.4

19 407.5 652.4 718.9 953.3 994.7 1123.4

2 2.9 58.6 112.5 702.8 1344.3 651.9

6 7.5 129.4 TimeOut TimeOut TimeOut TimeOut

12 24.5 TimeOut TimeOut TimeOut TimeOut TimeOut

19 252.5 TimeOut TimeOut TimeOut TimeOut TimeOut

2 2.5 48.0 78.2 444.8 722.7 329.2

6 1.2 12.3 - - - -

12 0.3 - - - - -

19 0.6 - - - - -
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Decomposed models can optimize integer investments

Decomposition 
Runtime (100s)

Monolithic 
Runtime (100s)

Ratio

~30 hours
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Runtime scales linearly with number of weeks
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Outperform standard Benders implementation

Results for the 6-zone case with 22 weeks (the largest that the standard decomposition method 
could solve in 48 hours)

STD BENDERS
NEW METHOD



Further progress through regularization
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• The planning sub-problem guesses optimal planning decisions based on estimated costs of system’s 
operations.

• Especially at early iterations, some guesses correspond to extreme planning decisions that slow down 
convergence.

• We correct the guesses proposed by the planning sub-problem, accounting for the fact that the planning 
sub-problem has incomplete information on system’s operations (well-known idea in mathematical 
optimization, it includes proximal bundle methods, level-set methods…)

• We also ignore integrality constraints on investment decisions until we are sufficiently close to 
convergence, and then switch them on to compute the final solution.
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Level-set regularized Benders decomposition
The level-set constraint

Possible choices for the regularization 
function include:
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Level-set regularized Benders decomposition with discrete 
planning decisions

Step 1. Apply regularized Benders decomposition for some choice of convex function R(.), 
ignoring integrality constraints on planning variables. When the convergence tolerance is 
satisfied, go to Step 2.

Step 2. Initialize the planning sub-problem with all the Benders cuts computed at Step 1, 
reinclude all integrality constraints, and run Benders without regularization step.

We avoid solving two MILPs at every iteration of the regularized Benders algorithm and take 
advantage of the (hopefully) good quality cuts computed through regularization to warm-start the 
planning sub-problem when integer constraints are included.



26-zone system for Continental US (CONUS)
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• 3 planning stages with foresight
• 52 weeks (8736 hours) per stage
• 26 zones, over 1000 resource clusters, and 49 transmission paths

For each of the 57 inter-zonal connections, we consider 3 line voltages 
(230kV, 345kV, 500kV) with either single or double circuits, and a 500kV 
HVDC line, resulting in 7 different line classes.

Discrete transmission expansion decisions correspond to the number of new 
lines from each class. 

Discrete generation investment or retirement decisions model the number of 
units in each generator and storage cluster.

CO2 cap policy constraints

GenX model with more than 26,000 
time steps, 70 million variables and 
144 million constraints 

Benders decomposition implemented as solver routine within the open-source capacity 
expansion model model GenX.
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Model solved using a 
single computing node 
with 52 cores. All level-
set regularization 
schemes reported here 
have ⍺=0.5

Benchmarking with continuous investment decisions
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Model solved using a 
single computing node 
with 52 cores. All level-
set regularization 
schemes reported here 
have ⍺=0.5

Benchmarking with continuous investment decisions
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Model solved using 6 computing nodes with 26 cores each for a total of 156 cores. During the 
first step, we use the interior point regularization function, i.e. R=0  

Performance with discrete investment decisions
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Higher temporal resolution reduces modeling errors
We compare against a GenX model using 41 representative days per planning stage.

• Using only 41 representative days 
GenX overestimated the installed solar 
capacity by 15%. 

• Runtime was roughly 6 hours, the 
same time it took our new Benders 
decomposition method to solve the 
same model with full temporal 
resolution (52 weeks per stage).

Note that this is a similar temporal resolution to many multistage planning models. For example, the RIO model (Evolved Energy Research):
• Best current representation of electricity sector in a multi-sector planning model.
• Used in Net-Zero America, Net-Zero Australia, REPEAT Project, Annual Decarbonization Perspectives, many others.
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https://www.evolved.energy/research
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Note that while installed transmission capacity increases with discrete decisions, cost for transmission 
expansion actually decreases by ~1%, because the larger installed lines have lower costs.

What about continuous vs discrete investment decisions?
Total installed capacity may be very 
similar, BUT…
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…there are significant regional differences

Figure shows difference in 
generation and transmission 
capacity between discrete and 
continuous cases. Positive values 
indicates larger installed capacity 
when discrete decisions are used.

The largest differences in 
transmission capacity corresponds
to areas with significant 
differences in installed renewable
energy generation capacity.

a. Solar b. Wind

d. Natural Gasc. Transmission -30 GW

-9 GW

-3 GW

+3 GW

+9 GW

+15 GW
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Strengths

• Runtime scales linearly with operational periods 
(e.g., weeks), enabling planning with multiple 
weather years or planning stages with 8,736 hours.

• Discrete investment/retirement decisions capture 
economies of unit scale (e.g., transmission lines)

• Accurate modelling of long-duration energy 
storage & reservoir hydro

We have solved a three-period energy planning model for 
a continental United States system with 27 zones and 
hourly, full-year temporal resolution with 52 weeks for 
each planning period (e.g., 8,736 hours per planning 
stage). 
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Limitations

• The model uses linearized power flow (often a simple lossy transport model). Especially when 
considering DC transmission lines, we should model transmission expansion with DC-OPF equations. 

Ideally, we should link with full fledged AC-OPF operational model to validate results / update 
transmission constraints. (Join us!)

• Runtime still scales quadratically with electricity network size. Future 
work should focus on incorporating network decomposition within our 
Benders framework. (Again, Join us!)

• Harnessing these advances requires access to distributed computing 
resources. We need a cloud-based implementation to enable high-
performance capacity expansion models for all users.



Questions and discussion


